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1. Abstract
Cold pools (CPs) are accociated with strong downdrafts that shut down rain events
and are known to inhibit convective self aggregation (CSA) [JR13]. We run a mech-
anism denial experiment to investigate the role of CPs in CSA by suppressing the
re-evaporation of precipitation (NoEvap) in radiative convective equilibrium (RCE)
simulations of cloud resolving models (CRM) within a double-periodic square do-
mains of linear horizontal dimension 480 km and 96 km with 1 km and 200 m resolu-
tion, respectively. Investigating the NoEvap dynamics is a meaningful idealisation
for the formation of tropical cyclones, such as hurricanes. Tropical cyclones are
linked to high boundary layer humidity thus weak sub-cloud re-evaporation and
tropical cyclones are suggested to originate above the tropical sea [Pal48]. CSA is
hampered when CPs are present (FullEvap) and in the NoEvap case can be tracked
as the monotonous decrease of convective cells, which decay or pairwise merge. We
determine convective cells and their inflow areas, termed ’basins of attraction’, that
partition the domain, and track how the cells and basins dynamically evolve.
To derive a compressed and discrete representation, each convective updraught is
characterised by its horizontal location and the area of its basin. With these three
numbers we initialise our model that captures updraughts as point-like objects and
derives the resulting horizontal velocity field via a Poisson equation, which we solve
analytically based on a Fourier-expansion. To develop a dynamical model, we in-
troduce a gravity-like approach to predict how updraughts move horizontally and
successfully calculate positive correlations to our data. Possible physical explana-
tions for the decaying-merging dynamic and observed oscillations in rainfall are
discussed, and will be further investigated.
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2. Glossary

Acronym Definition
LES Large Eddy Simulations
CRM Cloud Resolving Model
CP Cold Pool

NoEvap Simulations with fully suppressed re-evaporation of rainfall.
Consequently no CPs form.

FullEvap Simulations with full realistic re-evaporation of rainfall, which
is used as a control simulation where CPs are present.

Evap01 Simulations where the corresponding ventilation coefficient Fv
in the Seifert scheme [SB06] is 0.1 times the realistic factor
chosen for the FullEvap simulation. Simulations with Evap02
and Evap06 are defined analogously with 0.2 and 0.6 times
the realistic factor.

CSA Convective Self Aggregation
OLR Outgoing Longwave Radiation in a general context, without

concrete reference to its temporal development or its specific
height. Consistent notation is used for other variables, where
they are used in a more general context.

OLR(t)z Domain averaged OLR, for a specific layer height z:
1
A

∫
dx
∫
dy OLR(x,y,t)z. Consistent notation is also used for

other domain averaged physical variables, for example if their
temporal development is discussed.

CRH Column Relative Humidity, associated with the parameter r
in models of CSA (introduced in Sec. 4.3)

RCE Radiative Convective Equilibrium
CAPE Convective Available Potential Energy

Test parcel Concept used to calculate CAPE and CIN. A hypothetical
lifted idealised air parcel, which does not exchange heat or
gas with its environment. A common simplification used in
this thesis is, that condensed liquid water can be removed
from the test parcel, which describes an irreversible moist
adiabatic ascent.

Convective region Region with positive CAPE>0, where convection takes place.
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CIN Convective Inhibition
LFC Level of Free Convection
LNB Level of Neutral Buoyancy
SST Sea Surface Temperature

Mesoscale Horizontal scales in the atmosphere, from a few to several
hundred kilometres

Deep convection We refer to deep convection as convection where a large frac-
tion of the moisture condenses in the test parcel, so the la-
tent heat release provides additional buoyancy and convection
reaches high altitudes. In literature the term can be used am-
biguously [Ste05].

Final state Stage of the aggregated (NoEvap) simulation, when only one
convective cell is left, with the entire domain as its basin.

Table 2.1.: Acronyms in the context of atmospheric convection and simulations
used in this thesis.
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2. Glossary

Term Definition
Active pixel Any simulation pixel (x, y) where I(x, y, t) > I0, that is, where

the rain intensity at the lowest model level (rint) exceeds the
threshold I0. The threshold depends on the simulation under
consideration and is attuned to the applied filtering.

Rain patch Group of spatially linked active pixels at a specific time
tk (temporal simulation ’snapshot’), that fulfill a condi-
tion: (e.g I(xi, yj, tk) > I0 ∧ I(xi+1, yj, tk) > I0). We
consider a 4-pixel neighbourhood for each pixel (xi, yj):
(xi+1, yj),(xi−1, yj),(xi, yj+1),(xi, yj−1). Rain patches are later
linked over time to a track of temporal persistent rain clusters.

Rain cell Loosely defined as the joint dynamical object consisting of low
level convergence, the associated convective updraft, as well as
cloud and precipitation formation. We define the ’live span’
of a rain cell as the time period when rain is falling and track
rain cells with our cluster algorithm. Notice, that one rain cell
corresponds to one convective event, or one updraft detected
with the basin approach.

Cluster Technical term for rain cell, used in the context of the rain track-
ing algorithm (Sec. 5.3). A rain cluster is defined as consecu-
tive rain patches with spatial overlap: ∃(xi, yj) : I(xi, yj, tk) >
I0 ∧ I(xi, yj, tk+1) > I0. Clusters have a temporal start and an
end point, as the detected rain cell emerges and dies/merges. A
cluster object has a unique label m, a start and end time (tmstart
and tmend) and a list of corresponding pixels (the patches) for
each tmstart < tk < tmend.

Decay Fading of a rain cell, without directly noticeable interaction with
other rain cells. Dying is observed as a slow decrease of rain in
the context of rain clusters (I(cluster,t) → 0) and decreasing
convergence towards the corresponding updraft location in the
context of the basin approach.

Merging Two rain cells, fuse to one bigger event. Merging is mainly
present in the NoEvap simulations. Here, two rain cells usually
move towards each other before they merge, a dynamic well
tracked with both algorithms.

Clusterstore All clusters are organised in a Clusterstore: An object class,
that stores ’global’ information for each simulated time-step ti,
such as all active clusters and the number of merges or decays.

Final stage Fully aggregated state, when only one convective cell/rain
cell/updraught is left.

Transient stage The temporal approach to the fully-aggregated final stage.
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Convective cell Similar to rain cell, but more focused on the convective updraft
with low level convergence towards it than on the associated
cloud and precipitation formation. Convective cell is the pre-
ferred term in the context of the basin approach which does
not consider rainfall, but inflow areas given by convergence of
horizontal wind speed and thus includes larger areas. For the
NoEvap case rain usually stops several hours before the con-
vergence towards the corresponding updraft does, thus results
differ between tracking rain cells and tracking convective cells.

Basin Basin of attraction, defined as the inflow area of one convective
cell or updraught.

Table 2.2.: Acronyms and terms defined in the context of the two tracking algo-
rithms developed in this thesis (chapter 5)
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2. Glossary

Rain variable Definition
A(cluster,t) Area belonging to a cluster at a given time t, corresponding to

the number of pixels detected ’active’ in that cluster.
I(x,y,t) LES/CRM output variable ’r_int’ of rain intensity at the lowest

model level. I(x,y,t) roughly represents surface rainfall and as-
signs an instantaneous rain value every 5 h of the simulation to
each pixel in the two dimensional horizontal field. The value for
I(x,y,t) is given in mm/h, since the instantaneous rain volume is
projected to one hour under the hypothetical assumption that
’r_int’ at the pixel under consideration would stay constant.

I(t) Spatial domain average of I(x,y,t), given by the integral over the
domain, divided by the area: 1

A

∫
dx
∫
dy I(x,y,t).

I(t) can be thought of as a spatial rain density.
Itotal(t) I(x,y,t) integrated over the entire domain:

∫
dx
∫
dy I(x,y,t)

Itotal(t) can be thought of as a summed domain summed rain
intensity, limited by the global radiation constraint (Sec. 4.1.5).

I(cluster,t) Rain falling inside a rain cluster for a given time in the simula-
tion. I(cluster,t) corresponds to ’r_int’ integrated over the ac-
tive pixels belonging to this cluster and can be thought of as the
current total rain intensity of a cluster:

∫
Acluster

I(x,y,z) dAcluster.
I(cluster,t) Mean rain intensity averaged over all pixels of a cluster at a

given time t.

Table 2.3.: Acronyms and terms defined to describe precipitation and rain clusters
(chapter 6). Notice that time and space dimension are actually discrete since nu-
merical simulations are used. Nevertheless, the integral form allows to give a very
specific definition of what is meant by the different rain variables.
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Term Definition
Lowest layer Lowest horizontal output level (LEV2) of our simulations, with

height z ≈ 50m.
W Idealised vertical velocities, source function in the Poisson

equation.
Updraught Convective updraught, spatially extended area with clear pos-

itive vertical velocity wz=50m > 0 in the lowest layer.
Sink Due to mass conservation, updraughts are sinks in the horizon-

tal velocity field of the lowest layer (z ≈ 50m). These sinks’
locations are inserted in our model reconstruction.

Updraught-sink To prevent misconceptions and take the dual role of convective
updraughts into account, often the term updraught-sink is used
in the model context.

Model speed Absolute value of reconstructed horizontal velocity vector. Al-
though its magnitude is not scaled to correspond to the data,
it captures the spatial changes in wind speed well.

N(t)cluster Current number of detected rain cluster.
N(t)basin Current number of detected basins.
A(t)basin Area of an individual basin at a given time t.
A(t)basin Mean basin area A(t)basin at a given time t, calculated

1/N(t)basin.
Coarsening Coarsening processes typically appear in systems with two dis-

tinct phases, in our case moist convective regions and dry, sub-
sidence dominated regions. In our case the separation increases
over time, towards the fully aggregated equilibrium state (fi-
nale stage). The average ’size’ or ’area’ of a component reflects
the current state and typically the length scale increases as
a simple function of time. Often coarsening rates can be de-
scribed as power laws and typical examples are water droplets
on a thin precursor layer or the demixing binary viscous liquids
[BOS11].

Increase in scale Increase of the scale under consideration, for example increas-
ing length scale dLS

dt
>0 or area scale dAS

dt
>0.

LS Length scale, in the context of dynamical coarsening.
AS Area scale, in the context of dynamical coarsening.

Table 2.4.: Acronyms and terms defined in the context of the model reconstruction
(chapter 7), the related ’basin approach’ (Sec. 5.5, 6.4) and the coarsening process
(Sec. 6.5)
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3. Introduction
Tropical thunderstorms and tropical cyclones can cause devastating winds, flooding
and extreme precipitation, strongly impacting local human communities. Rainfall
and storminess are primarily associated with convective clouds, which, under certain
conditions, organise into larger clusters that are associated with extreme weather1.
Clustering of clouds is also observed in simulations2, for example when the simu-
lated atmosphere spontaneously divides into persistently cloudy, that is convecting,
and cloud-free, subsiding, subregions. This phenomenon, known as convective self-
aggregation (CSA), is characterised by dynamics of a gradually decreasing number
of moist convective regions to a state where rain is finally limited to a single moist
patch in the aggregated state.

Apart from spatially re-organising convection, CSA influences the mean state of the
atmosphere, such as the radiative budget. Such effects make CSA relevant for the
larger scale dynamics and, since it is supposed to play a role in the real atmosphere
[Win+17], crucial to consider in the context of climate change. CSA is found to
lead to a drastic decrease of domain mean humidity (net drying), accompanied with
a warming of the troposphere and a decrease of the total area covered by clouds.
Some studies suppose this could lead to a dangerous positive feedback loop, espe-
cially since higher temperatures can facilitate CSA [Ema+94], but other studies
suggest the rather opposite [Win+18]. Therefore, the radiation feedback associated
with CSA is an ongoing research topic, to explore how CSA would influence global
warming and how warming, e.g. increased sea surface temperatures, in turn could
feed back on CSA, with possible implications for the frequency and intensity of ex-
treme events in the tropics.

In conclusion, understanding CSA is important but multi-faceted, since convective
dynamics are complex and clouds organise on a wide range of interacting scales.
But reducing complexity can open up for understanding: The comparably simple
framework of radiative convective equilibrium (RCE), combined with Large Eddy
Simulations (LES) and Cloud Resolving Models (CRM) allows us to investigate the
development of CSA at the level of individual rain cells. We even simplify these
simulations further, when we remove the inhibiting effect of cold pools (CPs) on
CSA. CPs are strong downdrafts that form underneath precipitating clouds and

1https://isccp.giss.nasa.gov/role.html#SYSTEM_FEEDBACK
2Referring to a variety of simulations ranging from fine resolution Large-Eddy-Simulations (LES),
to cloud resolving models (CRM) and Global Circulation Models (GCMs)
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3. Introduction

shut down rainfall. In order to remove CPs, the re-evaporation of precipitation is
disabled, which enables very persistent rain cells.

We track these rain cells with a new rain tracking algorithm. Many variables describe
the state of the atmosphere, but precipitation is the quantity that most directly af-
fects the living environment, which motivated our choice. Moreover, surface rain
has practical advantages, for example it can be delimited to discrete rain patches
by applying a threshold. Investigating the NoEvap dynamics could yield further in-
sight into the formation of tropical cyclones, as hurricanes (Atlantic) and typhoons
(Pacific). These often devastating storms are assumed to originate above the trop-
ical sea [Pal48], where the boundary layer is often very moist and therefore the
re-evaporation of precipitation is weak [Gra+20]. Since humidity is high inside
tropical storms, investigating convective dynamics with weak or without (NoEvap)
re-evaporation of precipitation could be crucial to understanding their formation
and development.
Our mechanism denial experiment ’NoEvap’ further allows to investigate the role of
CPs in the formation of CSA by contrasting the generally artificial NoEvap simula-
tions to simulations with re-evaporation and thus CPs (FullEvap). Whereas convec-
tion does not change significantly over our simulations with CPs, strong aggregation
appears in their absence. This shows as a monotonous decrease of the number of
rain cells by two processes, which we term decaying’ and ’merging’. ’Decaying’ is a
gradual decrease in surface rain intensity of rain cells, whereas merging means two
rain cells spatially connect and become a larger one. This dynamics remind of a
competition, where some rain cells grow and merge and others decay until a single
’winner takes it all.’
To capture this dynamics, we aim to reduce the complexity further with a second
approach. We claim that simplified models often are very universal and can capture
similar behaviour in different fields. The concept we develop is based on a Pois-
son equation, commonly used in electrostatics or gravitational physics to derive a
field from a given source distribution. We use the Poisson equation to derive the
low-level horizontal velocity field from a given distribution of ’point-like’ convective
updraughts, which we extract from the simulation data. Each convective updraught
object is described by the horizontal centre-of-mass coordinates and a ’strength fac-
tor,’ which scales with its inflow area. To extract these two pieces of information
from the data we develop a second tracking algorithm based on the horizontal ve-
locity field. Since updraughts are sinks in the horizontal velocity field, we can follow
streamlines of instantaneous fields to detect centres of horizontal convergence, hence
updraught locations. We refer to the area from where the flow converges towards
such an updraught-sink, as its ’basin of attraction.’ Next, we find a compressed re-
construction of the instantaneous flow field, describing each updraught sink by three
numbers only. Further we explore how these reconstructions could be expanded to a
dynamical model that captures the merging dynamics, dominating the aggregation
process in our No-Evap simulations.
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Recently, the hypothesis caught attention that the real atmosphere too could be in-
trinsically drawn towards a stage of aggregation [WH19]. One possible explanation,
why this aggregated equilibrium might never be reached in nature could be mecha-
nisms working against CSA, as for example CPs. Taking all these into account, this
thesis is motivated to investigate mechanisms working towards and against CSA and
finding new condensed representations of key features.
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4. Background
This chapter provides useful background to follow the argument of the thesis and to
embed this work into the state of the art. After summarising basic theoretical con-
cepts of atmospheric science (Sec. 4.1) we introduce ’Convective Self-Aggregation’
(CSA) (Sec. 4.2). Subsequently, established models of CSA are discussed and linked
to our work (Sec. 4.3).

4.1. Theoretical background
We revisit concepts of atmospheric convection: Sec. 4.1.1, captures the specifics
of Convective Available Potential Energy (CAPE) in 6.3 and explains Moist Static
Energy (MSE) and Frozen Moist Static Energy (FMSE) (Sec. 4.1.3) as concepts
often used to measure CSA [WE14]. The framework used in this work is outlined by
introducing Large Eddy Resolving simulations (LES) and Cloud Resolving Models
(CRM) (Sec. 4.1.4), the Radiative Convective Equilibrium (RCE) and the weak
temperature gradient approximation (Sec. 4.1.6). Finally, cold pools (CPs) are
introduced (Sec. 4.1.7) as the phenomena whose role in CSA we aim to investigate.

4.1.1. Atmospheric convection
In order to investigate convectional organisation it is important to review its basic
dynamics.

In fluid dynamics, convection is the principle of energy transfer where mass transport
enables heat exchange. A simple example is a fluid, captured by a plate of higher
temperature at the bottom Tbottom and a plate of lower temperature Ttop at the
top, causing a temperature gradient ∇T aligned with the gravity vector in the fluid.
If ∇T ≈ Ttop − Tbottom inside the fluid exceeds a critical value, the fixed point of
motionless fluid becomes unstable and heat is no longer transported by diffusion
only (heat conduction) but also by (thermal) convection. This convective motion
strongly accelerates the heat transport from the warmer bottom plate to the colder
upper plate. The characteristics of a fluid’s convective flows are associated with the
Rayleigh number (Ra). Below a critical value, motionless heat conduction dominates
the flow rather than convection. Ra is defined as the ratio between the timescales for
thermal transport via diffusion ttherm. diffusion and via convection at a certain speed
w, twtherm. convection. We assume a cubic fluid volume with side lengths L between

14



4.1. Theoretical background

the plates1 and with mass density difference ∆ρ = ρtop − ρbottom > 0 caused by the
temperature difference. With an acceleration g due to gravity, the force acting on
such a cube can be approximated by ∆ρl3g. The viscous drag inhibiting the motion
is in the order νLw, where ν is the fluid’s kinematic viscosity. Assuming these
forces equal ∆ρl3g = νLw, allows to approximate w ≈ ∆ρL2g/ν. With this the
ratio of timescales of convective motion twtherm. convection = L/w can be approximated
as L/w ≈ ν/∆ρLg. For thermal diffusion along the distance L the timescale is
L2/α, with α thermal diffusivity. Together, this combines to the Rayleigh number:

Ra = ttherm. diffusion

twtherm. convection
≈ L2/α

ν/∆ρLg = L3/α

ν/∆ρLg . (4.1)

Whereas the Rayleigh number estimates whether a fluid’s heat transfer is dominated
by convection or by diffusive heat conduction, the Reynolds number estimates the
turbulence in a flow. The Reynolds number divides the product of typical fluid
velocity U and a typical length scale L̃ by the dynamic viscosity ν:

Re = U · L̃
ν

. (4.2)

We use the Reynolds number to estimate the diffusive scale in the horizontal flow,
when introducing our model (Sec. 7.1.2).

In atmospheric science, the term ’convection’ usually refers to free convection, a
vertical upward movement caused by density differences, hence excluding forced
convection [Ema+94]. ’Free convection’ refers to an unstable vertical mass distribu-
tion which causes buoyant air to rise upward against the gravitational field. It can
be further divided into two distinct dynamics: Dry convection (Sec. 4.1.1) and moist
convection (Sec. 4.1.1). Dry convection is present in the sub-saturated atmospheric
boundary layer (BL), the bottom of the troposphere, which is in contact with the
earth’s surface. It is often turbulent, e.g. due to surface drag, and therefore well-
mixed. Moist convection is usually associated with deep convection, which reaches
higher levels in the atmosphere.

Stable and unstable conditions

To test whether idealised2 stratification conditions are stable or not, one hypothet-
ically lifts a test parcel for an infinitesimal distance δz in an irreversible moist-
adiabatically process. Such a process is irreversible, since liquid water that would
condense when the test parcel rises, is assumed to be removed by precipitation as
soon as it is formed3.

1with L the distance between the plates
2neglecting friction
3https://glossary.ametsoc.org/wiki/Pseudoadiabatic_process
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4. Background

Assuming adiabatic cooling over the ascent, it has to be evaluated whether the
parcel’s density would be lower than that of the surrounding atmosphere after the
hypothetical lifting. If so, the parcel would continue to rise and the stratification
is unstable. Otherwise, stratification is stable and the cooler parcel would be accel-
erated downwards and due to an overshoot of its hydrostatic equilibrium start to
oscillate with the Brunt-Väisälä frequency N [SA95].

N =
√
−gdρ
dz

N depends on the acceleration caused by gravity g and the change of density ρ with
height. For this reason, it is also refereed to as ’buoyancy frequency’. This frequency
is the upper frequency limit for gravity waves, internal atmospheric waves, in which
buoyancy acts as the restoring force. Gravity waves converge between potential
and kinetic energy and can transfer energy between different convective events with
speeds up to several m/s [Tsu14].

Dry convection

We refer to dry convection as buoyancy-driven transport where condensation can be
neglected, which assumes an adiabatic ascent in an atmosphere totally determined
by its temperature field T (x, y, z, t) [Ste05]. Buoyancy b can be described using the
potential temperature θ: b ≈ g δθ

θ0
. Potential temperature (Eq. 4.3) is a conserved

quantity in dry convection and allows to compare air masses at different heights,
since it is the temperature a parcel would have if brought adiabatically, or isentrop-
ically, to a standard pressure p0. With R as the universal gas constant for dry air
and cp as the heat capacity at constant pressure, potential temperature is defined
as:

θ = T

(
p0

p

)R/cp

(4.3)

For a given stratification, the vertical gradient of θ defines whether conditions are:

• stable: ∂θ
∂z
> 0 ,

• neutral: ∂θ
∂z

= 0 ,

• unstable: ∂θ
∂z
< 0 .

Usually, convection drives towards a neutrally stratified state, where the dry entropy
is at its maximum (compare Sec. 4.1.2).
The dry adiabatic lapse rate is defined as the vertical temperature gradient assuming
a dry adiabatic lifting [Ran09]:

Γd =
(
∂T

∂z

)
dry adiabatic

(4.4)
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Moist convection

Moist convection is associated with deep convection, when moist air rises high
enough to fall below saturation temperature. Then the specific humidity qv, the
mass of water vapour in a mass unit of moist air, reaches the saturation point qS
and water starts to condensate. Condensation releases latent heat which provides
extra buoyancy to the water vapour test parcel. This can accelerate a saturated air
mass further upward. Since the ongoing latent heat release partly compensates the
cooling, the parcel can be lifted a finite distance.
The case of moist adiabatic lifting is often referred to as conditionally unstable, since
stability is lost when saturation is reached.

One can imagine a parcel to be trapped in the basin of an unstable fixed point. It
only escapes, when enough energy is provided to overcome an energy barrier called
convective inhibition (CIN). To overcome CIN, a parcel needs to be raised to a height
where it is warmer than its environment, so it gains positive buoyancy. This height
is defined as the level of free convection (LFC, Fig. 4.1). Below the LFC, a small
perturbation fades and the parcel is pulled back to the local potential minimum. At
the LFC, the fixed point becomes unstable and an infinitesimal lifting accelerates
the parcel further upwards, until it reaches a stable fixed point: the level of neutral
buoyancy (LNB, Fig. 4.1). The LNB is the maximum height the test parcel can
reach by convection, since all water is condensed there so the air within the test
parcel becomes very dry.
The difference between the potential at LFC and the potential at LNB, is called the
convective available potential energy (CAPE, Fig. 4.1). When a parcel overcomes
the threshold, given by CIN, CAPE can be converted to kinetic energy and induces
the upward movement of a parcel by free convection. A high CAPE indicates regions
where deep convection is possible. We refer to deep convection as convection where a
large fraction of the moisture condenses in the test parcel, so the latent heat release
provides additional buoyancy and convection reaches high altitudes. CAPE will be
used to contrast convective dynamics in Sec. 6.3.

Liquid potential temperature

To be precise, the temperature output used in the LES is liquid potential tempera-
ture θl, which is the temperature a test parcel would have if brought adiabatically to
a standard reference pressure4, with all water converted to the liquid state [Hol73].
It is linked to temperature T and potential temperature θ as follows:

θe ≈ θ · e
qlLv

cd
pT (4.5)

With ql as liquid water mixing ratio, Lv the latent heat of evaporation and cdp the
specific heat of dry air. When calculating CAPE and CIN this conversion has to be

4usually atmospheric pressure at sea, roughly 100 000 Pa
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Figure 4.1: CAPE for unstable
conditions. Unstable conditions in
the atmosphere correspond to positive
CAPE (grey shading) and facilitate con-
vection. CAPE is calculated as the
difference between the virtual temper-
ature profiles of an adiabatically-lifted
test parcel (orange) and the background
profile of the environment (blue), ver-
tically integrated from the LFC to the
LNB.

taken into account.

Calculating CAPE and CIN

Buoyancy depends on the composition of an air mass, because for a given temper-
ature, moist air is less dense than dry air5. The virtual temperature Tv (4.6) is
defined as the temperature dry air (H2O replaced by other gas molecules) would
have at the density of a specific composition. It is proportional to the temperature
T and the ratio of the gas constant of this composition R, which comprises the gas
constant of water vapour Rv and dry air Rd, multiplied with the corresponding mass
fractions qv and qd:

Tv = T
R

Rd

, R = Rd · qd +Rv · qv . (4.6)

5Moist air is less dense, because the molar mass of H2O is lower compared the other air compo-
nents as N2 and O2, but due to equipartition of energy the pressure each molecule exerts is the
same
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For moist air the composition changes over a hypothetical lifting (Sec. 4.1.1) and
buoyancy can only be linearly approximated piece-wise: for the saturated and un-
saturated case.
Due to latent heat release, temperature decrease with height is reduced in the moist
adiabatic case. Therefore, the moist adiabatic lapse rate Γmoist adiabatic, which we con-
sider in our CAPE calculation (Sec. 5.4) is smaller than Γdry adiabatic. Γdry > Γmoist
corresponds to the changing slope in the test parcel’s profile (Fig. 4.1) when con-
densation starts.

CAPE is the difference between the virtual temperature profiles of the test parcel
T parcel
v and the background profile of the environment T env.

v integrated from the LFC
to the LNB :

CAPE =
∫ LNB

LFC
g
(
T parcel
v − T env.

v

T env.
v

)
dz . (4.7)

Since positive CAPE is the buoyant energy available to lift an moist air mass adia-
batically, CAPE provides information where convection can possibly take place.

4.1.2. CAPE in the tropical atmosphere
In most of the tropics, the population of cumulus clouds is high and convection
often develops quite spontaneously, linked to low LFCs. This limits the amount
of CAPE building up (Fig. 6.7) until being released as kinetic energy. Despite
that, regions of large CAPE do develop, too. Seeking physical explanations, Xu
and Emanuel observe buoyancy profiles of cumulus clouds, which are known to be
extremely in-homogeneous.
Before, Betts (1982) observed that the tropical atmosphere in deep convective re-
gions is nearly neutral to the moist adiabatic ascent of an undiluted subcloud layer
parcel. Xu and Emanuel systematically examined the stability of the western pacific
atmosphere and suggest that the atmosphere organises along a moist adiabatic lapse
rate.
The buoyancy of an air parcel depends on Θe, which is the temperature the par-
cel would reach, if brought adiabatically to a standard reference pressure, whereby
all contained water vapour would condense and release its latent heat. Xu and
Emanuel suggest that the ’well mixed’ boundary layer is not really mixed in terms
of equivalent potential temperature Θe, which makes buoyancy crucially depending
on the height a parcel originates from and on the cumulus cloud properties. They
argue, that in such a conditionally neutral atmosphere, it is problematic to assume
vertical motion to be generated by latent heat release and suggest large scale distur-
bances (as for tropical cyclones, [Ema86], [RE87]) could rather be linked to feedback
mechanisms in the subcloud layer.
Concludingly, Xu and Emanuel state that the tropical atmosphere is neutral to non-
precipitating clouds, but do not answer the question whether or why the tropical
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atmosphere is conditionally stable. We will refer to their hypothesis when discussing
CAPE in our NoEvap simulations (Sec. 6.3, Fig. 6.7).

4.1.3. Moist Static Energy (MSE) and Frozen Moist Static
Energy (FMSE)

MSE is calculated analogously to equivalent potential temperature Θe (Eq. 4.5),
by assuming a hypothetical adiabatic lifting of an air parcel, but assumes that any
kinetic energy is locally dissipated into heat6. MSE is approximately conserved in
adiabatic ascent or descent and combines the enthalpy cpT 7, potential energy g · z
and the energy of potential latent heat release Lv · q [KS79]:

MSE = cpT + gz + Lvq . (4.8)

Modelling studies agree that in the CSA process moist static energy variance is dom-
inated by humidity variances above the boundary layer, a feature resulting from the
maintenance of weak temperature gradients in the tropical atmosphere [Win+17].

FMSE is an a thermodynamic variable similar to MSE, including an additional term
taking the melting and freezing of water into account so FMSE is conserved in deep
convective processes. The vertical column integral of FMSE can only be changed
by three processes: radiation, surface fluxes and horizontal transport. Thus, it is
a suitable quantity to analyse organisation of moist convection of the atmosphere
(Sec. 4.15).

4.1.4. Large Eddy Resolving Simulations (LES) and Cloud
Resolving Models (CRM)

LES were proposed in the 1960s to simulate atmospheric flows with very high
Reynolds numbers [FR02]. Subgrid scale processes, which are not resolved in LES,
are assumed to behave as isotropic turbulence, which is strictly applicable for fine
horizontal and vertical resolutions of up to 100 m. In addition, horizontal and verti-
cal discretisation should be of similar magnitude. Both requirements are sometimes
compromised due to high computational effort, thus LES are used to simulate meteo-
rologic phenomena at coarser scales up to 1 km8. Regarding computational cost and
accuracy, LES are between direct numeric simulations (DNS), which resolve all fluid
properties, and solutions of Reynolds-averaged Navier-Stokes equations (RANS).

CRM is a term that emerged in the 1980s (brief review [GC17]), referring to simula-
tions with resolutions up to a few kilometres, which still allow to study the statistical

6though this amount is often negligible
7equal to internal energy, if no volume work is done
8In this work, we will refer to 200 m resolution as LES and 1 km resolution as CRM
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properties of convective cloud systems. Thanks to increasing computational power,
today there are even Global Cloud-Resolving Models (GCRMs) that simulate global
convection dynamics and still resolve statistical properties of clouds [Sat+19].

4.1.5. Radiative Convective Equilibrium (RCE)
When heat is exchanged by radiative transfer, the thermal equilibrium is called Ra-
diative Convective Equilibrium (RCE). RCE describes the statistical equilibrium of
the earth’s atmosphere for a given (constant) solar forcing and aerosol concentra-
tion, assuming horizontal energy transport can be neglected (Sec. 4.1.6).
More concretely, at sufficiently large horizontal and temporal scales, typically 103 km
and weeks, the incoming solar radiation balances the outgoing thermal radiation in
a dynamic equilibrium. Within this equilibrium, radiative cooling, compactly de-
scribed by the Stefan-Boltzmann law σT 4

eff, with σ ≡ 5.67 · 10−8W m−2K−4 the
Stefan-Boltzmann constant and Teff the effective emission temperature, balances
convective heating. Convective heating warms the atmosphere by upwards trans-
portation of warm and moist air, that for example rises from an (externally heated)
warm sea surface (4.1.1).
This global radiation constraint is often found to approximately limit the possible
amount of global rainfall: OLR is effectively emitted in the free troposphere, around
cloud height. This radiation layer warms by convective heating, which decreases the
vertical temperature gradient and prevents convection and thus rainfall, unless the
level is cooled enough by OLR.

Studies on such radiation constrains suggest, that domain mean precipitation in-
creases with warming [Tak09] [BR89]. Jeevanjee and Romps recently suggested an
explanation for the precipitation increase ( 2-3%/K) suggested by global climate
models [JR18] . They claim water vapour density being a function of temperature
only9 (in RCE) and clear-sky radiation dominating their RCE simulations, due to
a low cloud fraction. This could offer explanations for the global precipitation con-
strains and is especially interesting, since the cloud fraction is known to decrease
with aggregation.

In RCE, this total supply of rainfall within a certain horizontal area has to be parti-
tioned between different ’microscopic’ rain cells, with typical diameters of O(1 km).
Between these rain cells, typically spaced at O(10 km) distances, energy can be ex-
changed via gravity waves, which are generated when buoyancy forces aim to restore
an equilibrium. Nevertheless, recent work [EWV14; WH19] suggests that more than
one stable equilibrium could be possible, for example one with and one without CSA.

9An analytical model for tropical relative humidity, which is linked to the water vapour density
had been suggested by Romps[Rom14] before.
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To investigate such complex phenomena as CSA, it is meaningful to consider RCE
as the simplest possible framework [Win+17], as we do in our simulations (Sec. 5.1).

4.1.6. Weak temperature gradient approximation
Additional constrains for diabatic and large-scale fluid dynamics result from the
weak temperature gradient approximation [SNP01]: horizontal temperature differ-
ences are assumed to be quickly removed by compensating vertical motion. The
assumption has been shown to be approximately valid for the tropical atmosphere,
where horizontal temperature gradients are observed to be small and the Coriolis
force can be neglected.

4.1.7. Convective cold pools
Convective cold pools (CPs) are volumes of relatively cold air surrounded by warmer
air. When raindrops evaporate underneath precipitating clouds, evaporative cool-
ing creates a pocket of cold air [Hol73], which accelerates downwards due to its
relatively high density. When hitting the ground, the cold air creates a laterally
propagating gust front, spreading radially along the earth’s surface. The gust front
is associated with increasing wind speeds and spreads with typical velocities of
5 km h−1 − 10 km h−1 [Zui+17]. Due to lower humidity in higher levels of the at-
mosphere, the gust front is linked to a rapidly dropping relative humidity at the
location where the transported air originates [Tom01] [Hae19]. The temperature of
the downdraught depends on the potential temperature at the origin of the trans-
ported air and CPs interact both dynamically and thermo-dynamically with their
environment.
Typically, CPs last on the order of a few hours [Zui+17] and reach maximal radii
of 10 km− 100 km. Collisions of gust fronts can trigger new convective events with
resulting CPs, which influences the temporal and spatial organisation of convection
[Hae+19]. It is a matter of current research how exactly CPs interact with the large
scale flow and influence convective organisation [Zui+17].

4.2. Convective Self Aggregation (CSA)
CSA is the spontaneous spatial organisation and clustering of convection despite
a homogeneous environment [Win+17], first described 1993 by Held, Hemler, and
Ramaswamy [HHR93]. After convection is initially distributed approximately ran-
domly, CSA gives rise to separated moist convecting, and dry non-convecting regions.
These regions grow on timescales of days to weeks, significantly longer timescales
than the lifetime of a typical mesoscale convective system [Win17].
Often, in the final aggregated state rain is limited to a single convective updraught
area, surrounded by dry subsidence [WH19]. The size of this region seems to scale
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Figure 4.2.: Precipitation aggregates over a CMR simulation (reproduc-
tion based on Fig. 1-3 from [BBK05a]) Precipitation P distribution over a
576 kmx576 km doubly periodic domain with 3 km horizontal grid spacing. P de-
velops patterns of precipitating and non-precipitating regions after 10 d (a), which
become more pronounced as aggregation advances (b) until only one precipitating
region is left (c). Notice that the precipitation density is more than three times
higher in the fully aggregated state. © American Meteorological Society. Used with
permission.

with the domain size, but the final position of the convective region is random, thus
only depends on initial noise [WE14].

4.2.1. CSA and domain size
Many studies showed and investigated how domain size and resolution influence the
occurrence of CSA, e.g [PR19], [Win+17]. Generally, simulations with larger do-
mains and coarser resolutions are more likely to aggregate than smaller domains and
finer resolutions [MH12]. Muller and Held suggest the domain size dependency could
be explained by the sensitivity of the low cloud distribution to domain size, since
they suggest low clouds play an important role in organising convection [MH12].
Patrizio and Randall suggest the domain size sensitivities to be related to an in-
crease in boundary layer wind speed as the circulation width increases for larger
domains [PR19]. Jeevanjee and Romps conclude from previous studies, that CSA
emerges when domains exceed a critical width of typically 200 km-300 km and claim
CP effects to impact on this transition (Sec. 4.2.4).

4.2.2. Quantifying CSA
The aggregated state is characterised by positive spatial and temporal correlation
between deep convective updraughts. Such positive correlations can result from
growing of dry regions or merging of individual convective updraughts. The onset
of aggregation can e.g. be measured by an increase of outgoing longwave radiation
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(OLR) (Sec. 4.3.2, [WE14]). Other explicit metrics used to quantify CSA include
the fraction of the domain covered with subsiding air or the number and nearest
neighbour distance between convective cells. An inter-comparison project [Win+18]
evaluated different cloud resolving models (CRMs) and general circulation models
(GCMs) over a wide range of simulations and revealed significant differences between
different metrics of CSA. For example some metrics of both model groups suggest
an increase of CSA with global warming, whereas others do not. Consequently,
quantifying CSA is an ongoing research topic.

CSA is not considered a numerical artefact observed in GCMs and CRMs, but sus-
pected to play a role in the real atmosphere too, especially for tropical regions.
Examples include the development of tropical cyclones and planetary-scale organi-
sation, such as the Madden-Julian oscillation [AR15].

4.2.3. Drivers of CSA
Studies agree that CSA is driven by moisture and radiative feedbacks. Windmiller
describes that in regions with higher humidity, surface horizontal wind speed and
surface fluxes seem to increase [Win17]. The upward transport of moisture is defined
as the moisture flux Emoisture flux. Friehe and Schmitt describe Emoisture flux by a
bulk formula (Eq. 4.9) [FS76], combining the moisture transfer coefficient cE, the
mean water vapour density near the surface ρs, the mean water vapour density at a
reference height ρa and the mean wind speed V :

Emoisture flux = cEV (ρs − ρa) (4.9)

Consequently, Emoisture flux is proportional to the wind speed V , varies proportional
to the specific humidity of air infinitesimally close to the (sea) surface (ρs) and de-
creases if the atmosphere is more saturated (larger ρa).

When the rising air is moist, more latent heat is released (Sec. 4.1.1) and accel-
erates the air further upwards, causing vertical divergence. By mass conservation,
vertical divergence creates a pull and increases horizontal convergence. Larger up-
draughts create a stronger pull, increasing horizontal convergence and wind speed,
which causes a larger moisture flux and thereby provide an extra energy supply for
convection, resulting in a ’rich gets richer’ dynamics, discussed in Sec. 6.4.3.
Additional drivers of CSA are water vapour and cloud feedback [MH12]. For ex-
ample, OLR often increases in dry, non-cloudy regions with less water vapour in
the atmosphere (’clear sky effect’), which further cools these regions and inhibits
convection there. Since OLR mainly depends on temperature (Stefan-Boltzmann
law, T ≈ σT 4), the effective height of radiation is crucial: assuming a clear sky,
the effective temperature determining OLR is close to the warm surface, causing
strong radiative cooling. If clouds are present, their height is crucial. Low clouds
are usually warmer and often denser than high clouds, cause stronger OLR and often
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inhibit convection, whereas high clouds have a smaller cooling effect (Sec. 8.1). A
detailed investigation of the physical mechanisms driving CSA was made by Wing
and Emanuel (Sec. 4.3.2).

4.2.4. CSA and CPs

There seems to be consensus, that positive (Sec. 4.2.3) and negative feedback mech-
anisms compete on the way to CSA [Win+17]. One mechanism supposed to coun-
teract CSA by redistributing moisture from moist convective to dry regions is the
influence of CPs. The dynamical effects of CPs are limited to the radii they reach,
which are typically less than 10 km. Therefore fine grids of approximately less than
3 km are needed to resolve the dynamical effect of CPs [Hae19] [Hir+20] [Mos+19].
The consideration of CPs at such fine resolutions could explain why CSA occurs less
at higher resolution.

Interestingly, Boye Nissen and Haerter found that for larger domains, spatial organ-
isation of (weak) CPs could actually trigger CSA [BH19] (Sec. 4.3.4).
Nevertheless, permitting CPs in simulations is known to open up for CSA at all
domain sizes and resolutions [Kur+18]. Jeevanjee and Romps claim that CPs are
responsible for the domain size dependence of CSA (Sec. 4.2.1)
In the absence of CPs, aggregation strength is suggested to smoothly decrease when
reducing domain size [JR13].

Muller and Bony show that weak downdraughts (weak CPs) facilitate CSA, since
the re-distribution of moisture is inhibited and link this result to the domain and
resolution sensitivity of CSA. Weak downdrafts are stated to be sufficient to trigger
CSA, at least in the absence of OLR feedbacks [MB15], which seems compatible
with our weak CP investigation in Sec. 6.0.1. For these weak CP studies Muller
and Bony observe stationary and localised convection (in line with our results, sec.
6.1.1). They further claim that OLR feedback is not responsible for CSA, since
a horizontally homogeneous radiative cooling did not prevent CSA and suggest a
moisture memory as modelled by Craig and Mack (Sec. 4.3.3).
This project runs a mechanism denial experiment by suppressing the re-evaporation
of rainfall (NoEvap) to investigate the influence of CPs on CSA and contrasts No-
Evap simulations to corresponding simulations with CPs (FullEvap) (Fig. 6.3).
The absence of CPs in NoEvap simulations leads to very persistent dynamics, more
similar to coarser simulations which might not fully resolve CPs (Sec. 4.3.2, Sec.
4.3.3, Sec. 7.3.3). Therefore, it is meaningful to introduce established models for
CSA (Sec. 4.3), so this study can be affiliated to their work.
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4.3. Models of convective self aggregation
Multiple studies of idealised numerical simulations have linked CSA to increasing
spatial humidity variance, indicating systematically dry and systematically moist
columns. Established conceptual models [EWV14; CM13] and the pioneering ap-
proach of Bretherton, Blossey, and Khairoutdinov (2005) are based on humidity
feedback mechanisms. All of these studies describe how a horizontal perturbation in
humidity evolves over time, but each focuses on different feedback mechanisms and
even consider the humidity content at different vertical levels. [WH19] discusses bi-
stability in all three models (Sec. 4.3.4), suggesting a bifurcation if humidity reaches
a critical value qRCE, a value stated to depend on the specific RCE simulation.
Since key insight regarding CSA was already offered by Bretherton, Blossey, and
Khairoutdinov (2005), we briefly summarise their findings (Sec. 4.3.1) before ex-
plaining, where the newer models of Craig and Mack (Sec. 4.3.3) and Emanuel,
Wing, and Vincent add detail or differ (Sec. 4.3.2). The latter will be discussed
together with its accompanied paper [WE14], which investigates the physical mech-
anisms the model is built on.

4.3.1. Bretherton, Blossey, Khairoutdinov, 2005
In their seminal work, Bretherton et al. studied the organisation of deep moist
convection in RCE using prescribed sea surface temperature (SST). Using the weak
temperature gradient approximation (Sec. 4.1.6), they analysed CSA as an instabil-
ity of a homogeneous atmosphere and suggested convection–water vapour–radiation
feedbacks that systematically dry the drier columns and moisten the moister ones.
Many of their results have been confirmed in a range of setups since then.
Bretherton, Blossey, and Khairoutdinov use the System for Atmospheric Modelling
(SAM10) to run LES/CRMs (Sec. 4.1.4) to simulate a 576 kmx576 km doubly
periodic domain with 3 km horizontal grid spacing and pre-described sea-surface-
temperature (SST) of 301 K. White noise is used to initiate convection in the
otherwise horizontally homogeneous field of liquid-ice static energy sli. This sli
is calculated analogously to liquid water potential temperature θl (Sec. 4.1.1), by
calculating the thermodynamic energy an air mass would have, if all liquid water
would evaporate before it is brought adiabatically to a given reference pressure.

sli = cpT + gz − L(qli + qice)− Lfqice (4.10)

With the constants cp for isobaric specific heat of dry air, g for gravitational accel-
eration, L and Lf for the latent heat of vaporisation. The mixing ratios qli and qice
of liquid water and ice combine to the total precipitation mixing ratio q = qice + qli,
which together with the total non-precipitating water q mixing ratio describe the
10Version 6.1 of SAM, updated version of the model introduced by Khairoutdinov and Ran-

dall[KR03]

26



4.3. Models of convective self aggregation

Figure 4.3.: Daily precipitation P depending on column relative humidity
r. (Reproduction from [BPB04], Fig. 4) The data was averaged over 2500 grid
points and measured monthly in the tropics (between −20° and 20°) in 1998-2001.
Dots show the 75%, 50% and 25% percentiles and crosses show bin-mean values of
P . The fitted relation is P(r) = ead(r−rd) (with ad = 15.6, rd = 0.63). © American
Meteorological Society. Used with permission.

total water qt = q + qp mixing ratio.

The simulation output is averaged horizontally over 72 kmx72 km blocks and tem-
porally over an 24 h interval, in order to focus in mesoscale 11 organisation.
Bretherton et. al introduce a semi-empirical model, which approximates a budget
for column relative humidity based on column-integrated frozen moist static energy
(FSME, Sec. 4.1.3). Since CSA is defined by the process of segregation into dry
and moist regions, FMSE is a compact (2D) way to quantify this moisture segrega-
tion process12. FMSE variance increases with the degree of CSA, which can either
result from an anomalous source of FMSE in a region of already high FMSE, or
an anomalous sink of FMSE in a region of low FMSE. FMSE is used to derive an
ordinary differential equation (ODE) for the relative humidity (CRH) of each grid
box, assuming a constant temperature profile in each box. This is justified by the
focus on earlier stages (5 d-15 d), before the domain-mean warming associated with
CSA is present (Sec. 4.2.3).

An earlier observational study of Bretherton, Peters, and Back in 2004 [BPB04]
collected data in the tropics (between −20° and 20°) on a monthly basis between
1998 and 2001. This comprehensive study showed, that relating precipitation P
to CRH r provides clearer results and lower regional differences than relating P to

11horizontal scales in the atmosphere, from a few to several hundred kilometres
12FMSE is exactly conserved for adiabatic displacements, in the governing equations their CRM

implements. In general, other similar variables, like low-level moisture or column relative
humidity typically give the same qualitative behaviour
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the water vapour path W . Calculating r was done by dividing W by its saturation
value r = W/W ∗. Afterwards the data was sorted into 100 bins of width 0.01.
Precipitation shows an exponential dependency P(r) = ead(r−rd) (with ad = 15.6,
rd = 0.63) fitted with a nonlinear least square method (Fig. 4.3).
A fit of comparable form is derived based on the simulation data for the model
introduced here (originally introduced in 2005, [BBK05a]), leading to an exponential
dependency of precipitation P on CRH r:

P (r) = PRCEe
am(r−rRCE), with: am = 16.6. (4.11)

Where PRCE = 3.5 mm d−1 is the horizontal mean precipitation rate in the radia-
tive–convective equilibrium of the simulations, r short for CHR and rRCE = 0.72 is
the corresponding CHR P (rRCE) = PRCE.
CRH is assumed to change mainly through the combination of cloud-radiation and
surface flux forcing (diabatic forcing), and through moisture convergence. Diabatic
forcing linearly depends on precipitation13:

THF + ∆R = (cs + cR) · L(P − PRCE), (4.12)

with the surface total heat flux THF and the column-integrated radiative flux con-
vergence ∆R. Fitting THF and ∆R on precipitation P shows linear relations, which
are fitted with slopes of cs = 0.12 and radiation cR = 0.17 respectively.
Finally, the convergence of FMSE in the onset of CSA (days 6-10) also is linearly
dependent on precipitation and modelled as:

Ch = ahL(P − PRCE)(rh − r), with: rh = 0.62, ah = 1.8 . (4.13)

This Ch depends on the vertical motion profile of a column, which is determined
by its radiative cooling profile. Therefore advective and diabatic forcing are closely
intertwined. Both forcings are not only determined locally, but depend on the
mean circulation. With increasing mean circulations, the surface heat fluxes in
the transitions of moist and dry regions increase, an effect which depends on the
circulation scale.
Finally, ODE describing the temporal change of CRH is:

dr

dt
= G(r) = (cs + cR − ah(r − rh)) · (P (r)− PRCE)

W/r
(4.14)

Where W is the water vapour path and all other variables are defined as introduced
above. Bretherton, Peters, and Back stress that their parametrisation is only valid
for the onset of aggregation at a certain domain size, since the circulation scale
is linked to the domain size and domain mean variables (eg. OLR, temperature)
13rather than the water vapour path, which anticipates that diabatic forcing essentially depends

on the amount of convection
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change with aggregation. For their parameter choice, r = RRCE is an unstable equi-
librium, which physically means that anomalously moist columns gain more FMSE
(by increased surface fluxes and radiative forcing) than they lose to lateral FMSE
divergence. The second (aggregated) equilibrium at r = rmax, accompanied by a
much stronger precipitation rate, is stable. Consequently, columns with initial CRH
r > rRCE will moisten to r = rmax, while columns with initial CRH r < rRCEE will
continue to dry (unlimited).

In conclusion, the semi-empirical equations focus on local processes increasing hu-
midity perturbations and do not consider humidity exchange between neighbouring
regions. Further Bretherton, Blossey, and Khairoutdinov (2005) showed that CSA
is suppressed when radiative cooling or surface fluxes are horizontally homogenised.

4.3.2. Wing and Emanuel, 2014 and Emanuel, Wing, and
Vincent, 2014

The comprehensive analysis of physical mechanisms in Emanuel, Wing, and Vincent
(2014) aims to quantify the feedback contributing to CSA, again by developing a
budget method for FMSE. The framework consists of rotation free, cloud resolv-
ing SAM-simulations within RCE (Sec. 4.1.5), similar to the ones in Bretherton,
Blossey, and Khairoutdinov (2005). SST is fixed to values in the interval 297 K-312 K
and includes interactive surface fluxes. We consider the doubly-periodic domain of
768 km2 × 768 km2 horizontally and 3 km horizontal grid resolution too coarse to
resolve the detailed dynamical aspects of CPs, but elements of their thermodynamic
influence, especially local suppression effects on precipitation, are likely still present.
Differential equations are solved for the prognostic thermodynamic variables non-
precipitating water, total precipitation water and liquid-ice static energy (similar to
Eq. 4.10, Sec. 4.3.1). The statistically-homogeneous initial conditions are derived
from the domain average of a small 96 km× 96 km RCE simulation and motion is
induced by adding white noise perturbations to the liquid water-ice static energy.

The first aspects analysed are the dependence of CSA on SST and why CSA is
reflected in a large decrease of the domain-average column relative humidity (CRH).
This decrease is reported to be a consequence of very low water vapour in most
columns. Together with overall low cloud fraction, that is, clouds localised within
a small sub-region, the overall low CRH allows for a dramatic increase in domain-
averaged OLR as simulations aggregate. High SST is known to favour CSA, so a
minimum temperature of 300 K is reasonable. Surprisingly, simulations with SST
equal or above 310 K do not aggregate, but the authors suggest this would not be
valid for larger domains14 [EWV14].

14They hypothesise that at higher SST, larger dry static stability occurs, which means the subsi-
dence compensating convective updraughts is weaker and thus requires a larger area.
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The derived budget for the variance of mass-weighted vertical column integral of
FMSE h′ is:

∂ĥ′

∂t
= SEF ′ +NetSW ′ +NetOLR′ −∇h · ûh (4.15)

SEF ′ is the surface enthalpy flux, equal to the sum of the surface latent heat flux
(LHF) and sensible heat flux (SHF): Sensible heat exchange influences the temper-
ature and is contrasted to latent heat exchange, which is the ’hidden’ heat exchange
not influencing temperature. NetSW is the column short-wave (SW) radiation flux
convergence, which is positive if more SW radiative flux enters a column than leaves
it. NetOLR is the column longwave (OLR) radiative flux convergence, with OLR
≈ T 4 according to the Stefan-Boltzmann law. The final term is the advective trans-
port term ∇h · ûh leaving a given column, which is calculated as a residual from
the rest of the budget (diagnostic equation). Assuming a divergence-free flux, the
advective transport term has zero domain mean. The resulting approach can be
viewed as a spatial model, where an increase in h′ indicates a higher degree of ag-
gregation.

Within this framework, Wing and Emanuel (2014) investigated the relevance of a
number of positive feedbacks during the progression of aggregation, and summarised
the results as follows: Outgoing longwave radiation (OLR) and surface heat fluxes
were found to be the dominant drivers for the onset of CSA during the first 20 days
of the simulations. Intermediate stages 20 d-60 d were dominated by shortwave ra-
diation feedback, but horizontal convergence seemed equally important in 30 d-60 d.
Finally OLR was reported to be the main feedback responsible for the maintenance
of CSA (60 d-100 d).

An accompanied paper investigated how the dominant OLR feedback depends on
SST [EWV14] and introduced a conceptual two layer model to derive a positive
feedback towards CSA based on moisture and temperature.

Two layer model

Emanuel, Wing, and Vincent (2014) model the OLR feedback in two horizontal
layers, one for the lower (layer 1) and one for the upper troposphere (layer 2). Ra-
diative emission can be approximated as black body radiation, which is proportional
to T 4, according to the Stefan-Boltzmann law. Each layer is characterised by a cor-
responding temperature T1, respectively T2, and respective emission or absorption
coefficients η1 and η2, which each depend on the specific humidities, q1 or q2, of the
corresponding layer. Convection is an upward mass flux MU and the downdraught
is assigned to Md. Md is assumed to be identical for both layers. T1, T2 and the
surface temperature TS are constant in time. In line with their model, SW feedback
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4.3. Models of convective self aggregation

is positive, as a dryer atmosphere absorbs less incoming sunlight. For low temper-
atures this significantly contributes to the perturbations in net radiative heating,
but is offset by the stronger negative OLR feedback. For higher temperature it is
a small contribution compared to the positive OLR feedback. Thus the tempera-
ture dependence of the feedbacks governing CSA is dominated by the OLR effects.
According to Emanuel, Wing, and Vincent (2014), an initial dry spot, indicating a
negative moisture perturbation, is reinforced in the following feedback loop:
For a sufficient hot and dry upper troposphere (dry spot) the emission decreases,
whereas the radiative cooling of the lower troposphere increases. The upward mass
flux Mu is decreased and a downward motion through the troposphere establishes.
This large scale descent, combined with a decrease of deep convection further dries
the troposphere of dry areas, which reinforces the initial negative moisture pertur-
bation. For a positive moisture perturbation, the opposite mechanism holds.

Concluding, Wing and Emanuel claim the SST dependency of CSA to be caused
by positive longwave radiation feedback, which is only present for large SST and
a resulting moist lower troposphere. If this feedback is present, negative humidity
perturbations induce a stronger radiative cooling, resulting in a mean descent of
cooled air, since the weak temperature gradient approximation holds (Sec. 4.1.6).
Conversely, positive humidity perturbations induce weaker radiative cooling, thus a
mean ascent of the warmer air.

From an abstract perspective, aggregation can be considered a linear instability of
the state of horizontally-homogeneous moisture within RCE, which occurs when
water vapour in lower troposphere becomes so large, that variations of its radiative
cooling are mainly governed by variations in upper tropospheric water vapour. At
this point, the conditions in the lower troposphere itself can be neglected and a bi-
furcation occurs, separating the non-aggregated moist regime with large scale ascent
from the aggregated dry-regime with large scale descent.

The aggregated dry-regime state is assumed to be supercritical since it appears
spontaneously. Therefore, under certain conditions an internal drive towards CSA
seems present in the atmospheric simulations. Emanuel, Wing, and Vincent further
argue, that CSA being not robust in simulations could be an artefact of running
CRMs close to their critical temperature.

Interestingly, Wing and Emanuel emphasise that radiative feedbacks are important
drivers of CSA, but question convection-moisture feedbacks to be sufficient to cause
CSA. Such feedbacks between convection and moisture are suggested by Craig and
Mack and will be discussed in the following. (Sec. 4.3.3)
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4.3.3. Craig and Mack, 2013
It is known that local processes that are linked via diffusive coupling lead to pattern
formations [Mur82] similar to the spatial organisation in CSA. Craig and Mack15
present a coarsening model for CSA, based on a positive feedback between convec-
tion and humidity in the free troposphere [CM13]: First, convection will increase
the humidity in the free troposphere by transporting humidity out of the boundary
layer. Second, deep convection is more likely to occur in moist regions, since the
entrainment of dry air surrounding a given convective updraft reduces buoyancy and
this effect will be stronger in the drier sub-regions. Boundary layer processes are
not considered, similar to the model introduced above (Sec. 4.3.2).

Coarsening is observed as dynamical scaling, with a power-law increase of correlation
length w.r.t. time, that is, the growth of spatial structure is self-similar. The
coarsening model is based on an Allan-Cahn equation (Eq. 4.16, [Lif62]) with the
troposphere’s total humidity I as the ’order parameter’, which describes the phase:

∂I

∂t
= −δV (I)

δI
+ ν∇2I . (4.16)

The first term on the RHS is the functional derivative of the potential16 V (I). Two
minima in V (I) correspond to a bi-stable system with two equilibrium values for I.
Mixing, through entrainment and detrainment, is described as a diffusive process
(second term, RHS), with ν an effective diffusion coefficient. With such a diffusive
mixing and a non-conserved order parameter, this equation implies a length scale
(LS) increase proportional to t1/2.

Craig and Mack physically model coarsening, assuming that subsidence is spa-
tially homogeneous, but regions that already convect are re-moistened by the re-
evaporation of rainfall. The evolution of the column humidity is explained by local
processes and assumes relative humidity to be exponentially depending on local
rainfall.

A global coupling is given through the domain-mean precipitation rate, implying a
constrain on total precipitation as required for RCE simulations (Sec. 4.1.5), which
then provides a constraint on the local reaction-diffusion-like dynamics.
The coarsening model centrally assumes that the moisture content in the lower tro-
posphere determines where convection takes place, but lacks small scale variability
and smooths out the effects of individual convective cells to the moisture content17.
Assuming a uniform horizontal temperature, feedback between cloud or water vapour
15Mack later changed to Windmiller
16sometimes associated with the Landau free energy
17It would be interesting to investigate, whether the ’diffusion’ could be more physically modelled

as the influence of CPs on the small scale
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and radiation is neglected. Instead, the model focuses on a positive precipitation-
humidity feedback and argues that the boundary layer and thus surface fluxes and
horizontal transport can be neglected, too.
The sensible heat flux is set to zero, thus to keep the domain-averaged precipitation
rate constant, a constant radiative heat loss is proposed. This heat loss amounts to
constant OLR, which is balanced by latent heat, released in the convective process.
The model divides the domain into discrete columns, and models the moisture con-
tent of the free troposphere Iv for each column. Iv is given by the water vapour
density ρv, which is integrated vertically over the troposphere:

Iv =
∫ zT

zB

ρvdz . (4.17)

The time evolution ∂Iv/∂t is given by this schematic budget:

∂Iv
∂t

= S + C + T , (4.18)

where S is the column integrated subsidence drying, a negative contribution creat-
ing a moisture sink at subcloud height. Subsidence is driven by radiative cooling,
which causes cooled and thus denser air to descent. T is the horizontal transport
of moisture, thus radiative cooling and horizontal transport are actually taken into
account. The major moisture source is the convective moistening C, which is mainly
detrainment from convective clouds. Lacking a relation for the dependence from C
on Iv, Craig and Mack use the precipitation rate P (Iv), which is approximated to
be exponentially increasing with Iv:

P = a
(
e

b·Iv
I∗v − 1

)
. (4.19)

I∗v is the saturation integrated water value I∗v = 57 kg/m2, the scaling parameter b
is chosen with b = 11.4. The form of P is based on Bretherton, Peters, and Back
(Sec. 4.3.1), but modified such that no precipitation will occur in a completely dry
atmosphere (Iv ≈ 0). The global radiation constrain is provided by a, which is
determined for each iteration step t:

a(t) = Pav
1

Adomain

(
e

b·Iv
I∗v − 1

)
dAdomain

(4.20)

The constant Pav in RCE is estimated with 8 kg/m2/d (based on Tompkins and
Craig, [TC98]). Precipitation is linked to convective moistening via a precipitation
efficiency η, chosen to increase with Iv as:

η = β
Iv
I∗v
. (4.21)

33



4. Background

With β slightly above one, η varies from zero for very dry air (Iv ≈ 0), which causes
strong evaporation of cloud water and thus little rainfall, to β for saturated air18.
All these assumptions combine to:

C(Iv) = a
(
e

b·Iv
I∗v − 1

)(
β
Iv
I∗v

)
(4.22)

A necessary condition for a coarsening process is, that drying dominates over moist-
ening for small Iv, whereas moistening dominates for large Iv. Here, the spatial
autocorrelation length exhibits dynamical scaling with t0.5, a factor shown to be
universal for different values of b. Nevertheless, the coarsening process takes longer
for smaller values of b, corresponding to a weaker positive feedback between precip-
itation P and column humidity content Iv.

Assuming subsidence S to be linearly depending on Iv and the advective transport
T to be dominated by down-gradient diffusion, the final budget equation is:

∂Iv
∂t

= −αIv + a
(
e

b·Iv
I∗v − 1

)(
·β Iv
I∗v

)
+K∇2Iv . (4.23)

K is the eddy diffusivity K ∼ voL. Typical values associated with convective mo-
tions are horizontal velocity v0 = 10 m s−1 and length scale L = 10 km, leading to
K = 105 m2 s−1. Craig and Mack acknowledge that a diffusive transport is not jus-
tified if the moisture field significantly influences the velocity.
In the present work we adopt the assumption of homogeneous subsidence but ex-
plicitly consider the horizontal boundary layer flow, which has been neglected in the
two models presented above (Chapter 7). We further re-examine the choice of a
re-moistening feedback based on the evaporation of precipitation: In our main sim-
ulations, re-evaporation is explicitly suppressed, nonetheless, these simulations do
show self-aggregation. Therefore, we claim additional positive feedback mechanisms
to be present (Sec. 8.1). We make a reference to the dynamical scaling (Sec. 6.5)
and compare it to the LE increase approximated from our NoEvap simulations.

4.3.4. Bi-stability and spatial evolution of CSA
CSA as a general organizing mechanism?

It has not yet been understood how the spatial scale of CSA develops temporally
and which mechanisms control this time evolution. After introducing the coarsening
model (Sec. 4.3.3), Windmiller and Hohenegger suggested a rather mathematical
approach, proposing that in RCE the humidity distribution of the atmosphere can
be described as an abstract bi-stable system, an idea that had been discussed before
18This is mentioned to reflect a net drying tendency for very moist air, observed by Raymond

et al., [Ray+09]
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[RZ00].
Again, in this framework, CSAmeans that systems transition from the dis-aggregated
to the aggregated equilibrium. A bifurcation occurs when humidity reaches a critical
value qRCE, which depends on the respective RCE simulation. If local humidity is
perturbed, such that q > qRCE, the region develops towards a moist equilibrium,
whereas local values q < qRCE cause an entirely dry region.
Windmiller and Hohenegger claim a universal spatial evolution, between the three
established models of [BBK05a; CM13; EWV14] introduced above (sec. 4.3.1, 4.3.2,
4.3.3).
Despite varying in detail, all three models base on local mechanisms and in all
models homogeneous equilibrium is unstable against local humidity perturbations.
Comparing the three respective time evolution equations allows Windmiller and
Hohenegger to derive a stochastic model for the (universal) spatial evolution of CSA.
The respective equations for the budget evolution are regarded as different possible
source terms R in a reaction diffusion equation, which describes the evolution of the
humidity content:

∂q

∂t
= R(q) +D∇2q (4.24)

The form of this equation is similar to the Allen Cahn (Eq. 4.16) equation in the
previous coarsening model (Sec. 4.3.3, [CM13]) introduced by Craig and Mack. R
describes the local processes for each column and differs depending on the model
under consideration. It is claimed that the horizontal mixing term D∇2q, which
provides a diffusive spatial coupling19, can result from a stochastic representation of
convection20.
Despite that the precise time evolution differs between models (each implying a dif-
ferent R), the key property of coarsening is shown to be universal: Intervals with
typical LE increasing proportional to t0.5 can be found for all three models. Never-
theless, when moist (dry) regions start to expand at the expense of the dry (moist)
regions and moist (dry) regions cover more than half of the domain, the scaling
diverges from the t0.5 scaling.

The general idea of bi-stability and the supercritical bifurcation proposed by Emanuel,
Wing, and Vincent, raises the question whether the atmosphere is actually driven
towards an aggregated state under a rather broad range of model assumptions.
Thinking this further, if true for simulations, what does this drive imply for the
real atmosphere? Aggregation-like effects can be observed in the context of extreme
events as tropical cyclones, but synoptic-scale disturbances and homogenising influ-
ences, such as CPs, may generally prevent persistent and complete aggregation in

19which lacks physical motivation in the original coarsening model (Sec. 4.3.3)
20We suggest, that maybe modelling CPs could even be a physically more plausible approach to

describe mixing in CSA models, than assuming diffusive processes.
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nature21. The following paragraph provides an overview on studies investigating the
role of CPs in organising convection.

CPs (dis)organise convection

Cold pools (CPs) are known to inhibit CSA [JR13], by redistributing moisture to
dry regions (Sec. 4.2.4). On the other hand they seem to organise convection in
their own way. CP interaction can be used to model the energy transfer in the
boundary layer [MH20] and a model proposed by Fuglestvedt and Haerter (2020)
shows that CPs organise subsequent updraughts in CP driven convective organisa-
tion: When colliding, CP outflow boundaries become immobile and force moisture
into narrow convergence zones. This effect results in localised pre-moistening, which
favours subsequent convection and seems to dominant over surface fluxes. Thus, CP
collisions reset the circulation in the boundary layer.
Boye Nissen and Haerter (2019), Haerter (2019) suggest that despite CPs generally
working against CSA, the organisation of weak CPs could actually trigger CSA.
Many studies agree, that CSA starts from a small dry spot, but do not answer
the question how an initial dry spot emerges. Under certain conditions, the dry
downdraught of weak CPs could facilitate the emergence of dry spots that are large
enough to not be re-moistened and therefore trigger CSA. The emergence of such
a dry spot is discussed in a simple geometrical model [BH19]: The model centrally
assumes that collisions of expanding CPs, modelled as simple circles of growing
radii, initiate new CPs. The expanding CPs can trigger new convection when each
of the colliding CPs has a radius between a minimum radius rmin, caused by the
strongly-negatively buoyant core of the CPs, and rmax, the maximum radius they
can reach. The ’circle model’ shows geometrically that for weak CPs with small
rmax, dry spots emerge where no new convection can occur. Once a dry spot is
large enough, the weakened CPs can not ’bridge across’ such a dry spot and no
moisture can thus be transported into this region. This phenomenon is referred to
as the ’initial symmetry breaking,’ which triggers the positive feedback loop of CSA
described above (Sec. 4.3.2).
Consequently, weak CPs can open for CSA on very small domain sizes of 96 km× 96 km
at fine horizontal resolutions (200 m).

This thesis focuses on the extreme case of zero re-evaporation (NoEvap) where
no CPs form (rmax = 0) and which always aggregates (Sec. 4.2.4). We propose
that, without CPs redistributing moisture, the initial noise on the homogeneous
conditions is enough to break the spatial symmetry, and in some regions convection
never takes place (Fig. 6.7). This work starts its investigation by building on the
same simulations as used in [BH19] (Sec. 5.1) but later decreases horizontal model
resolution to 1 km, which allows to simulate a larger 480 kmx480 km domain at
comparable computational effort.
21Nevertheless, an internal drive towards aggregated states can not be excluded
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events

Because convective clouds are highly localised, investigation on the scale of individ-
ual convective cells is needed in order to understand their physics. Therefore it is
crucial to track their temporal development. This chapter provides details on the
simulations used (Sec. 5.1).
Sec. 5.2 briefly outlines the tracking methods for convective events and is further
divided into a short background on cloud tracking (Sec. 5.2.1) and a motivation
of an alternative approach based on the velocity field (Sec. 5.2.3). Afterwards an
algorithm is introduced in Sec. 5.4, that calculates the convective available potential
energy (CAPE). The last introduced approach tracks convective events based on the
lowest level velocity field (Sec. 5.5).

5.1. Large-eddy (LES) and cloud-resolving model
(CRM) simulations used

This project uses the University of California, Los Angeles, Large Eddy Simula-
tor (UCLA-LES) to run under RCE-like conditions at horizontal model resolution
of 200 m and 1 km. Sub-grid scale turbulence is parameterised after Smagorinsky
[Sma63]. Further, a delta four-stream radiation [PS09] and a two-moment cloud
micro-physics scheme [Ste+05] are used. Rain re-evaporation was accounted for via
a scheme introduced by Seifert and Beheng 2006. Suppressing rain re-evaporation
means setting the ventilation factor Fv = 0 [SB06], so no condensed water (including
ice) converts to water vapour.

Energy is supplied externally by heating a mimicked sea surface to 300 K, hence
an infinite heat capacity and a perfect source of water vapour, assuming saturation
specific humidity at the atmospheric interface. Solar insulation is kept constant at
655 W/m2, which corresponds to an equatorial zenith angle of 50 deg [BBK05b]. We
assume interactive surface heat fluxes, which are proportional to the vertical temper-
ature and humidity gradients and to horizontal wind speed (bulk formula, Eq. 4.9,
Sec. 4.2.3). The horizontal wind speed is approximated using the Monin-Obukhov
similarity theory, which idealises the mean flow profile for a neutral boundary layer
based on Prandtl’s mixing length theory [Hol73]. Prandtl’s theory assumes a log-
arithmic dependence of the horizontal mean flow to height [PPP01]. To initialise
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temperature and humidity a prior 3-day spin-up simulation with 400 m horizontal
resolution is used (details [BH19], Fig. S1).

The Arakawa C grid [MO54] used is regular spaced in the horizontal with double
periodic boundary conditions1. The resolution between the 75 vertical levels varies
from 100 m in the lowest 1 km, to 400 m in the upper layers. Assuming an equatorial
region, the Coriolis force and the mean wind are set to zero. Weak noise generates
random initial perturbations to break complete spatial symmetry. Instantaneous
surface precipitation intensity, specific humidity, temperature, liquid water mixing
ratio, outgoing long-wave radiation, and 3D velocities are calculated every 10 min
for different vertical levels. To keep continuity to previous work done in [BH19], we
first simulate small domains of 96 km×96 km up to eight days. In addition, we run
coarser simulations of 1 km for a larger domain of 480 km×480 km.

5.2. Detection of convective events
Most work concerned with the onset of CSA uses field-like descriptions and models
and divides the domain into regular columns ([WE14][CM13][EWV14][MH12]). In
contrast, this thesis presents two ideas how to study CSA by describing convective
events as discrete objects:
(i) The ’rain-cluster’ approach, in line with the rain tracking introduced in Sec.
5.2.2.
(ii) The ’basin’ approach, for the lowest-layer flow field (z ≈ 50m)

5.2.1. Background on cloud tracking
Precipitation tracking for data from digital weather radars have existed for more
than 40 years [Cra79], with the purpose of early warning for extreme rain and storm
events. Later, satellite-based tracking was developed, with an increased interest in
long-term analysis of convective mechanisms [Men02].
In more recent years, simple object-based algorithms were suggested [DBB06], which
then became more sophisticated to detect complex entities of numerous individual
clouds and capture their splitting and merging [Hei+16]. The comprehensive long
term analysis by [WBS17] evaluated all tropical and subtropical rain data between
1980 and 2015 and focused on event characteristics, like size and total rainfall.
Another approach, the “forward-in-time” (FiT) algorithm [SBT13], starts by defin-
ing multiple thresholds in the precipitation rate that qualify rain events. In agree-
ment with our method (Sec. 5.3.2), unique rain objects are identified for all time
steps. Second, objects, linked across multiple time steps, are determined: Two ob-
jects are defined as a single event, if any pixel of an object at time t overlaps with
any pixel of an object at t+ 1. ’Forward-in-time’ refers to allowing an event to split

1https://mitgcm.readthedocs.io/en/latest/algorithm/c-grid.html
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into multiple objects, which are still considered as a single identity. In contrast to
FiT, our method allows two objects that are initially unique, to merge at any later
time step.

Generally, most algorithms are developed for very specific applications
so no consistent rain tracking approach, applicable to all situations, exists 2.

5.2.2. Tracking individual rain clusters

To investigate individual rain clusters on their way to CSA, we developed a spe-
cialised threshold-based rain cluster detection algorithm. At each time t we consider
four neighbours for each domain pixel (xi, yj): (xi+1, yj),(xi−1, yj),(xi, yj+1),(xi, yj−1).

A rain patch is defined as spatially neighboured active pixels:
e.g I(xi, yj, tk) > I0 ∧ I(xi+1, yj, tk) > I0.

A rain cluster is defined as two consecutive rain patches with spatial overlap:
∃ (xi, yj) : I(xi, yj, tk) > I0 ∧ I(xi, yj, tk+1) > I0.

We start by detecting rain patches for each simulated time step and later link them
over time. The horizontal distances which individual rain clusters’ centres of mass
travel in the simulated 10 min interval are small relative to their typical diameters.
Thus, it is reasonable to base the connection over time on pixel overlap. Visualising
the data (eg. in animations3) showed, that merging of rain clusters is an important
part of the dynamics. In contrast, splitting of rain events does not seem to be
part of the actual dynamic and can be considered an artefact, when the spatial
connection between pixels of rain clusters is (usually only temporary) lost. To
’suppress’ splitting, all raining pixels that have been connected once, are considered
as the same rain cluster for the rest of their duration. In contrast to standard
percolation algorithms (e.g [HK76]), we link rain patches ’forward in time’ only,
because we want a cluster to be a causally correlated entity: If two well-separated
clusters eventually merge much later, there is no reason to believe that they were
initially correlated. If two former separated clusters merge, a new rain cluster is
created, which stores the information of its history. Tree-like merging dynamics are
characteristic for the NoEvap simulations (Fig. 5.4).

2Recently, approaches are made to address this inconsistency in rain tracking methods. For
example the TOBAC algorithm (More: Sec. A.1.1) is designed to be applicable to multiple
situations

3Visualised in the supplemental material.
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5.2.3. Motivation of tracking algorithm, based on horizontal
velocity field

The LES data shows highly localised updraughts and a quite homogeneous sub-
sidence for the lower layers (Fig. 6.9). After smoothing the horizontal velocity
field using a Gaussian filter, it appears to be vortex-free; clearly separated areas
of horizontal convergence and divergence can be observed in the streamlines (Fig.
6.9, left). Each updraught is a sink in the horizontal velocity field with an area
of convergence surrounding it. These areas of convergence can be viewed as the
corresponding "basins of attraction".
These basins are separated from one another by boundaries of pure horizontal di-
vergence. This ’basin approach’ pairs the centre of a given updraught and the cor-
responding wind-field-derived basins from the LES data. After detecting the basins
for several simulation steps, they are linked in time to track their time dependence.
This procedure further allows to employ the updraught’s horizontal coordinate and
the corresponding basin area within a future toy model, revealing the underlying
dynamics.

5.3. Implementation of a rain cluster tracking
algorithm

We choose an object orientated approach to implement the cluster detection. The
workflow is visualised in Fig. 5.1 and the details of the different process stages are
explained in the following.

5.3.1. Preprocessing
We base our analysis on precipitation I(x,y,t), which roughly represents the surface
rainfall (glossary). Simulating a domain with lateral dimensions Lx, Ly, the I(x,y,t)
output is stored in a netcdf file containing an [Lx × Ly]× [t] array. To smooth fluc-
tuations, a Gaussian filter is applied. The filter size is chosen to fit the simulation
under consideration. For example, for the NoEvap simulation (at 1 km resolution),
we use a spatial kernel of 10 km on the horizontal dimensions and a 5 h temporal
kernel4.

Second, the filtered data is binarised: Active pixels (glossary) are marked ’1’. It is
important to do thresholding in interplay with the choice of filter parameters.
Afterwards a specialised segmentation algorithm (’cluster creation’) detects the
rain patches at each time step t with the ’scipy.ndimage.label’ function: A Lx × Ly
’label array’ inscribes active pixels of each rain patch with a uniform label. Not active

4The 5 h interval roughly corresponds to half of the oscillation period for the last remaining rain
cluster.
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Figure 5.1.: Abstract structure of the rain cluster detection algorithm
The input I(x,y,t) is pre-processed: Applying a Gaussian filter smoothes fluctuations
and applying a rain threshold I0 generates binary data. This binary data is then
segmented into discrete rain patches. These rain patches are then structured by
linking patches with pixel overlap in subsequent time steps and track rain clusters
over time, which involves a complex merging routine, introduced in 5.3.2. The
outcome are rain clusters that evolve over time and can be further analysed.
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pixels are inscribed with zero. To consider the double periodic boundary conditions,
we manually adjust the labels of patches reaching across a domain border: If I(x =
0, yj, tk) > I0 ∧ I(x = Lx, yj, tk) > I0 or I(xi, y = 0, tk) > I0 ∧ I(xi, y = Ly, tk) > I0,
the corresponding rain patches are considered to be the same (see Fig. 5.3, yellow
cluster). The segmentation algorithm returns the t×Lx×Ly label array, and a list
of pixels belonging to each patch.

5.3.2. Structuring
Patches

Patch objects are defined for a single time step tk and stores its corresponding active
pixels and the inscribed label. As explained above (5.2.2), we Link temporal
neighbours of pixels by searching for pixel overlap with patches occurring at tk+1.
Eventual overlaps with patches defined at tk+1 or tk-1 are stored in the patch object,
too. Optionally, additional features like the patch centre5 or the mean precipitation
(I(patch(tk)) can be calculated.

Track rain clusters over time

As explained in Fig.5.2, we link the patches to clusters that persist over time. The
algorithm Loops through time-steps tk and for each tk starts the processing by
grouping patches by their overlap to tk-1, distinguishing three cases:

1. no overlap tk to tk-1: A new cluster object is created and assigned with the
start time ’tclusterstart = tk. Such clusters without predecessors are referred to as
’root clusters’.

2. >1 overlap tk to tk-1: A patch(tk) overlapping with several patches(tk-1)
can indicate a merge of several clusters (further distinguished in Sec. 5.3.2).
If a merge is detected (Fig. 5.3, b→c), the previous clusters are closed and a
new cluster is created, storing the ’history’ of its predecessors.

3. 1 overlap tk to tk-1: The patch(tk) is added to the cluster to which the
overlapping patch(tk-1) belongs and the corresponding cluster continues for
one more time step (Fig. 5.3, a→b)

Closing clusters and progress to next time step

After the processes described above are conducted, the algorithm collects patches
existing at tk-1 which do not have an successor in tk. The associated clusters are

5The centre calculation is quite elaborate, since double periodic boundary conditions have to be
taken into account. Calculating the centre is relevant for tracking the lateral movement of rain
clusters or calculating the nearest neighbours distance (NN distance) between rain patches.
The NN distance is a measure used to quantify CSA, but the analysis of this implemented
feature is out of scope for this thesis.
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Figure 5.2.: Details of decisive parts of the algorithm: Linking rain
patches(tk) to rain clusters that persist over time. We loop through the
simulation time tk and group the detected rain patches(tk) by the number of pixel
overlap to patches(tk-1). Three different cases are separated, depending whether
there are no predecessors (green), several predecessors (red) or exactly one prede-
cessor (blue). Based on this either a new cluster is started, several clusters are
merged or an existing cluster is simply continued. Afterwards any cluster existing
in tk-1 without a successor at tk is closed and removed from the track of active
clusters from the current time.
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then ’decaying’ and closed, by setting tclusterend = tk. In addition, they are removed
from the list of ’living’ clusters for t ≥ tk.

Merging

The most complex part of the algorithm is the merging (Sec. 5.2, red) routine.
Again, splitting seems not relevant for the dynamic and removing splitting artefacts
makes the process much more demanding: If at any time tk-1 multiple patches be-
longing to different clusters overlap with a mutual successor patch at tk, they are
merged to one new cluster. From then on (t > tk) all their subsequent patches
are considered as one cluster, even if they loose spatial connectivity, until either
all ’cluster fractions’ die or all overlap again, which also prevents ’re-merging’ of
patches with a common ancestor in an elegant way.

Multi-merges of several patches merging in one step are covered too6 and merges
are tracked in a ’merging list’ in the Clusterstore, which organises all clusters over
the simulation.

To test our algorithm we ran it with the largest data set (480 km× 480 km) unfil-
tered, and found unexpected corner cases, as the rare case that one patch(tk) that
lost connectivity to other patches(tk) of its clusterm (corresponding to a ’suppressed’
split) merged to a patch(tk) of a different clustern. This case is now covered by merg-
ing all patches belonging to clusterm and clustern, although they have no direct pixel
overlap.

5.3.3. Discussion of the rain tracking algorithm
Challenges of detecting rain clusters

Like all threshold-depending algorithms, our cluster detection algorithm is very
filter- and parameter-sensitive. As common (compare Sec. A.1.1, [Hei+19]), we
apply filtering before applying a threshold. Changing the filter kernel demands to
adjust the threshold, since larger filters need a lower threshold I0.
Optimising these parameters is further complicated by the oscillations in clusters’
rain intensity I(cluster,t) (glossary). We claim I(cluster,t) results from the same
convective cell throughout the oscillation. Therefore, the challenge is not to loose
track of a cluster, when rain intensity in all pixels of the cluster temporarily falls
below the threshold (I(xi, yi, tk)>I0 /∈ I(cluster,tk)), but I(cluster,t) increases again
shortly after.
We also experimented with a temporal sliding window mean7, but in order to keep
continuity in raining clusters a temporal Gaussian filter showed to perform better.

6here the challenge is to avoid duplicates
7which nicely smooths curves of I(cluster,t)
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Figure 5.3.: Three snapshots (a-c) visualising the merge of the last two
clusters and the corresponding cluster representation provided by our
algorithm (d). (a-c) active rain pixels (I(x,y,t)> I0, red contours) are detected
in clusters. The different clusters are indicated with yellow, turquoise or green
background colouring respectively and the colours correspond to the illustration of
the abstract cluster representation (d). Note that despite reaching across the double
periodic domain boarders, the yellow clusters are detected as one. The yellow and
the turquoise cluster continue from (a) to (b) and merge to a new (light green)
cluster (c), as soon as their pixels overlap.
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Figure 5.4.: Visualisation of a cluster’s tree like merging history (toytree
library) It is possible to inherit properties from the newick library for our cluster
objects, which enables various visualisations. The node size scales with the mean
cluster area and the branch length scales with the time since the first detection of
a cluster, which also corresponds to the node label. Notice, that time (y-axis) is
given in simulation steps of 10 minutes and that cluster areas usually increase after
a merge, but exceptions occur due to tempo-spatial oscillations in I(cluster,t).

Figure 5.5.: Performance of the rain tracking, measured as the percentage
of domain integrated precipitation, that is detected inside all clusters:
100 ·∑cluster I(cluster,t)/

∑
x,y I(x,y,t). After 30 h more than 70% and after 70 h

more than 90% of rain is captured in our clusters. We suppose during this ’spin-up
time’ dynamics differ from later stages of the simulation. Since we decided to focus
our analysis on later stages (after 100 h), we chose the parameters to capture those
well, accepting a weaker performance over the first three days of the simulation.
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An additional challenge is the increase of spatial scale (glossary): Clusters become
larger and their distance increases over time. Thus, compromises have to be made,
when adjusting parameters: For our largest simulation (480 km×480 km) with more
than 18 days, we focused on filters that represent the stages after three days of the
simulation very accurately (Fig. 5.5). To scoop out the algorithm’s full potential,
the segmentation procedure should be improved to be less parameter-depending to
derive reliable scientific findings. For example additional physical variables could
be considered, for which our algorithm could be combined with functionalities pro-
vided by existing rain tracking libraries as the TOBAC algorithm introduced in Sec.
A.1.1 [Hei+19]. Nevertheless, a main advantage of our threshold-based algorithm is
a potential expansion to handle different types of 2D data. Theoretically, it could
be enhanced to work for example on back scattering data from satellite observations.

Refactoring the algorithm, we were able to reduce the computational time for the
rain tracking of the 480 km×480 km simulation to less than two minutes. In return,
some properties as the centres of rain patches and rain clusters are not calculated as
a standard feature anymore. Unfortunately, centre calculation demands high com-
putational effort: To take the double periodic boundary conditions into account, we
calculate the centre of mass (COM) for all pixels belonging to a rain patch, based
on a mathematical method introduced by Bai and Breen[BB08]. Their idea is to
calculate the COM for the x- and y-dimension separately, by forming the double
periodic domain into two orthogonal tubes. Now, the COM is calculated in 3D for
each tube and then is projected back to 2D, which provides the COM of all pixels
belonging to a rain patch. This tool does not use approximations and is mathemat-
ically elegant, but expensive in computational time. Concluding, we will consider
alternatives to use the ’centre’ feature for a systematical data analysis.

Concluding, our rain cluster algorithm is specialised to capture multiple corner cases
of the tree like merging dynamics, occurring in the NoEvap simulations. As a main
advantage, it can be easily reviewed visually that the detected number of clusters
conforms with the expected count (Fig. 5.3). The implemented algorithm allows to
track rain clusters over time, derive basic statistics and offers good evaluation of its
performance.

Nevertheless, since rain I(x,y,t) is strongly influenced by tempo-spatial oscillations,
we explore additional approaches, which rather focus on the underlying convective
dynamics.
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5.4. Calculating (CAPE) to detect regions where
convection can possibly take place

CAPE describes the buoyant energy of an moist adiabatically rising test parcel (Sec.
4.1.1) and convection is generally limited to regions of positive CAPE. To calculate
CAPE we compare the temperature profile of a hypothetical lifted test parcel with
the actual temperature profile of the background environment. Whereas the actual
temperature profile can be derived from the LES output via prognostic equations
calculating the profile of an irreversible moist-adiabatically lifted test parcel is more
complicated. To derive the test parcel’s profile, we follow the dry adiabatic lapse
rate (Sec. 4.1.1) until the water vapour pressure pv reaches the saturation value p∗v,
which is defined by the Claudius Clapeyron relation. From there on we follow the
irreversible moist adiabatic lapse rate, assuming all excess water instantly condenses,
releasing its latent heat and leaving the parcel falling down as rain due to gravity.
The main challenge is to determine how the fractions of the water phases in moist
air change, as the parcel is further lifted. We solve this by using the simplification
that condensed water is immediately removed from the test parcel (Sec. 4.1.1) and
follow a moist adiabatic lapse rate approximated by Randall [Ran09] with:

Γmoist = Γdry

 1 + Lq∗(T,p)
RdT

1 + L2q∗(T,p)
cpRvT 2

 (5.1)

L is the latent heat of vaporisation, q∗ the saturation specific humidity, Rd, Rv are
the gas constants of dry air and water vapour and cp is the specific heat capacity at
constant pressure.

After deriving the two temperature profiles, we compare them starting from maxi-
mum height level. The first intersection of profiles is the level of neutral buoyancy
(LNB, Sec. 4.1.1). From there the algorithm vertically integrates the positive virtual
temperature differences Tparcel−Tenvironments until the second intersection is reached
with the level of free convection (LFC, Sec. 4.1.1). The common unit of CAPE is
energy per mass J/kg, which can also be expressed as m2/s2. Results on how CAPE
develops in the absence of CPs are analysed with section 6.3 and compared to the
CP case visualised in figure 6.6.

Details of algorithm for calculating CAPE

The following outlines how the calculation of CAPE is implemented8. The LES
outputs the total water mixing ratio rtotal and liquid water potential temperature θl
and the pressure p. From these three variables we derive the background temperature
profile and the profile of an irreversible adiabatic lifted test parcel (4.1.1).

8Which is based on code provided by the atmospheric complexity group
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We start by approximating θl with equation 5.2:

θl ≈
(
p0

p

)κ (
T − Lv

cpd
ql

)
, κ ≈ Rd

cpd
(5.2)

Where Rd is the gas and cpd the specific heat capacity both for dry air, Lv the latent
heat release of vaporisation, and p0 the surface pressure. This relation (Eq. 5.2)
allows to calculate the water vapour mixing ratio rl. The water vapour mixing ratio
rv = pvRd

pdRv
= pvRd

p−pvRv
and the liquid water mixing ratio rl combine to the total mixing

ratio rtotal = rv + rl. This rtotal = ρv+ρl

ρd
is the joint mass fraction ρv + ρl of water

phases relative to the dry components ρd.

Combining rl with rtotal, which is part of the LES output we can calculate the rv
and the corresponding partial pressure pv.

To do so, we start with the law of partial pressures pi (Eq. 5.4), where each pi is
defined by the ideal gas law (Eq. 5.3).

pi = ρiRiT (5.3)

p =
∑
i

pi, ρ =
∑
i

ρi, here:p = pv + pd + pl (5.4)

With the pv, pd, pl as partial pressures of water vapour, the dry components of the
air and the condensed liquid water.
Assuming that condensed water has no volume in the test parcel, thus pl != 0 the
water vapour pressure pv = p− pd can be defined:

pv = p
rv

rv +Rd/Rv

(5.5)

Further assuming that pv can not exceed the saturation pressure p∗v(T ), a critical
value p∗v(T ) given by the empirical Claudius Clapeyron relation9, which we approx-
imate with Eq. 5.6.

p∗v(T ) ≈ 611.2 exp
(

17.67(T − 273.15)
T − 273.15 + 243.5

)
(5.6)

We check whether this critical value is reached: pv = min
(

rtotal

rtotal−Rd/Rv
, p∗v(T )

)
. For

pv < p∗v(T ) we derive the absolute temperature T profile based on the dry adiabatic
lapse rate Γdry. Once the critical value is exceeded, we approximate the temperature
based on the moist adiabatic lapse rate given with Eq. 5.1.

9from https://glossary.ametsoc.org/wiki/Clausius-clapeyron_equation
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Figure 5.6.: Architecture of the algorithm, extracting sinks and basin
areas in the horizontal flow of the data and initialising the model. Details
of the simulation data are presented in 5.1. The central ’find sinks’ routine that
determines sinks and corresponding areas is introduced in 5.5.2. Results of the data
analysis are presented in 6 and the model is introduced in 7

Lifting along the dry adiabatic lapse rate Γdry is straight-forward, since we lift along
the potential temperature Θ, which is by definition constant for this case. Lifting
along the moist adiabatic lapse rate Γmoist is done step by step for each model-
layer: First, the critical water vapour pressure pv ∗ (Tz=i) is calculated, so pv can be
set to pv ∗ (Tz=i). Second, the lapse rate Γmoist(Tz=i, pv, p) is derived. Finally the
test parcel is hypothetically lifted to the next level, by updating the temperature
Tz=i −→ Tz=i+1 = Tz=i + ∆z · Γmoist.

5.5. Tracking of convective events based on the
velocity field

We introduce an algorithm to locate convective events in the horizontal velocity field
of the lowest layer, and to detect their inflow areas as ’basins of attractions’, which
provides a spatial measure for their influence.

5.5.1. Basins of attraction
This section aims to substantiate the idea of basins of attraction in this context, by
discussing different fix-points in the flow (visualised in Fig. 5.7):

1. Stable fixed points: updraught locations, which are sinks and centres of
convergence in the horizontal velocity field
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Figure 5.7.: A tracer’s trajectory (purple dots) along the lowest level
streamlines (z ≈ 50 m) towards an updraught-sink (red dot) The streamline
colouring indicates the local speed |v(xi, yi, tk)|, which generally increases towards
the updraught-sinks. Notice the nearly faded convective cell in the bottom left
which hardly has any inflow left and how the algorithm considers the double periodic
boundary conditions.
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2. Unstable fixed points: Areas of pure divergence sometimes emerging at
borders between different basins of attraction, when the velocity is zero and
the flow changes direction

3. Saddle-points: fixed points with a stable (inflow) and an unstable (outflow)
direction, which are also located at the border between different basins of
attraction

Following the streamlines from any arbitrary pixel will always end in one of the
stable fix points. This is true, as long as step width and convergence time are
chosen large enough: The path can not end in an unstable fixed points then, since
an infinitesimal small perturbation is enough to leave those.

5.5.2. Determine basins of attraction as inflow areas of
convective events

To determine the basins, we use hypothetical tracers10, place them on a square grid
with 10 km lattice spacing and follow the streamlines of a simulation snapshot. After
smoothing the low-level wind field with a Gaussian filter (spatial kernel 10 km, no
temporal filter) these streamlines are vortex free and trajectories of hypothetical
tracers follow these streamlines unambiguously. Therefore, we can iterate through
all grid point (xi, yi) and follow the flow:

xi+1 = xi + dt · u(xi, yi), yi+1 = yi + dt · v(xi, yi) (5.7)

with di = a√
u(xi, yi)2 + v(xi, yi)2

(5.8)

We use a bi-linear interpolation to derive the flow at locations between the grid-
points provided by the 1 km resolution and take the local velocity into account to
determine the step width di, which by design is smaller at higher velocities. Step
width scales with a factor a, but a = 1 finds a good balance between high accuracy
and high calculation effort, as empirical investigation shows. After a given number of
iterations (chosen sufficiently high in the magnitude of the domain size) the tracer’s
trajectory converges to a stable fixed point corresponding to an updraught-sink.
Then, we check which trajectories end within a 5 km range around an updraught-sink
and then sort the start points of these trajectories to the corresponding updraught-
sink-object. With this procedure all horizontal grid-points are sorted to their asso-
ciated sinks. The choice of grid size means balancing computational costs with the
accuracy at which the basin areas are detected. The resulting framework allows to
divide the domain into ’influence areas’ of convective updraughts. For further anal-
yses, properties known to be linked to CSA, such as radiation, humidity or cloud
10Which is originally a common approach to detect the movement of convective events or rain cells

e.g [CHR10]
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cover could be systematically evaluated (e.g with regard to relative basin area) and
their development could be tracked as aggregation proceeds over time.

Find sinks by following the flow

The algorithm used to determine the basin of attraction belonging to each point-sink
is structured as follows:

A: The core is a function ’interpolate flow’, that interpolates the flow in x u(xin, yin)
and v(xin, yin) for a given floating number coordinate-tuple (xin, yin). The pe-
riodic boundary conditions are taken into account, to ensure that the returned
new coordinate-tuple 5.8 lies inside the domain.

B: The function ’Follow-flow’ calls function A for a given number of steps tmax,
starting from a given input point (x0, y0). The return of each interpolation step
(each call of A) is iteratively used as input for the next call. The trajectory
visited, following the flow from a starting point, can be stored in a list (xvis).

C: The streamline-trajectory is determined for starting points on a regular grid of
the Lx×Ly domain. The output result is stored in a list, with entry containing
the start and end coordinates for each of the i = Lx ·Ly pixels in the domain:
result= [(xi0,yi0), (xifinal,yifinal) ] with i = 0, ..., Lx · Ly

E: The endpoints of the trajectories are then sorted into groups11. The first
endpoint opens a new endpoint group. If x2

final,y2
final is close to x1

final,y1
final it

converges to the same sink. Otherwise a new sink group is started. We then
iterate over all endpoints and sort xifinal,yifinal, whereby we start a new sink
group whenever an endpoint is not close to the first element of an existing
group. Since the spreading of the endpoints is small compared to the area
of later simulation stages, this assignment works well when choosing the ’is
close’ range sufficiently large. After sorting all trajectories, the centre of the

11We use the simple numpy function ′isclose′. To increase the performance and reduce compu-
tational costs, this step could be improved by a suitable clustering algorithm, which does not
require information on the number of clusters that should be detected.
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endpoint group is determined: these coordinates are referred to as the sink
locations.

F: Finally, a new class ’sink’ is built, to organise the data and simplify post-
processing. We create a sink object for each sink we set, when initialising the
field Q (see A.3.3). Each sink object contains the information of all starting
points, that ’flow’ into this sink and thus build it’s area of attraction. The
number of these points is proportional to the area of the basin. The area later
determines the strength factor, which together with the x- and y- coordinate
of the sink is enough to reconstruct the flow in our model (introduced with
chapter 7).

5.5.3. Discussion of the basin approach
The basin approach allows to divide the domain in areas of influences correspond-
ing to individual convective updrafts and to track the development of these basins
over time. The basin algorithm offers a wide range of possibilities for data analysis,
which has not been exhausted yet. In order to analyse large data in an automated
way the algorithm should be improved, to make the tracking more robust and to
save computational cost.

As discussed for the cluster algorithm (Sec. 5.3.3), a main difficulty is choosing
parameters that are appropriate over a long period of the simulation. To address
this issue, it could be reasonable to determine parameters dynamically, for exam-
ple depending on the number of basins detected in the previous simulation time
step (Nbasin(t-1)). To enhance the determination of updraught-sink locations from
the end points of our tracer-trajectories, cluster algorithms from a machine-learning
context could be used. Also, it could be reasonable to consider additional variables
as the vertical velocity w to determine the sinks (implementation step (E)) more
unambiguously. Locating the updraught-sinks independently from the tracers would
allow to split step (E) in: First, determine the updraught-sinks locations (E.1) and
second sort all grid points to these updraught-sinks, depending on their tracers’ tra-
jectories (E.2). In this case, we would not have to place the tracers on a regular grid,
but could save computational cost by using approximations. An example would be
to start with a coarser grid and determine the trajectories of the tracers. This coarse
grid is then only divided further, if not all vertices’ tracers converge to the same grid.

One parameter that is particular difficult to determine is the radius r, which deter-
mines whether two updraught-sink at tk and tk+1 are considered the same. We try
to choose r to the distance Dtk→tk+1

i an updraught-sink is typically displaced from
tk → tk+1. Dv < r provides a lower bound for r, but typical values of Dtk→tk+1

i

seem to increase over the simulation.
Earlier in the simulations, updraughts are located closer to each other with small
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distances Dtk
i↔j between their centres (xi, yi), (xk, yj). Dtk

i↔j > r provides an upper
bound on r, such that: Dtk

i↔j < r < D
tk→tk+1
i .

One possible solution would be to chose a dynamical parameter r(t), which increases
as Nbasin(t-1) decreases. Alternatively, larger simulations could be analysed period-
wise, assuming that the dynamic changes when aggregation advances.
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6. Data analysis
The following chapter presents the results of the Large Eddy Simulations (LES)
and Cloud Resolving Model (CRM) data analysis, using the tracking algorithms
presented in Sec. 5. First, effects of reduced re-evaporation of rainfall are presented
(Sec. 6.0.1). Then NoEvap and FullEvap data is analysed based on rain tracking
(Sec. 6.1), aiming to contrast the dynamics with and without CPs and to charac-
terise the transient approach to CSA in the absence of CPs. Sec. 6.2 briefly takes
up oscillations, observed in rain intensity I(t) and Sec. 6.3 investigates the convec-
tive potential in NoEvap and FullEvap simulations (implementation Sec. 5.4). An
analysis of convective dynamics, based on the ’basin approach’ (see Sec. 5.5.2) is
presented with Sec. 6.4. A change in typical spatial length scales, characteristic for
aggregation, is analysed in Sec. 6.5.

6.0.1. Reducing the re-evaporation of rain
In order to align this analysis to previous work, we start with the same, relatively
fine-resolution, simulations as used in Boye Nissen and Haerter [BH19]1. We vi-
sualise the effect of reducing rain re-evaporation2 in LES simulations (simulation
details: Sec. 5.1): Strongly decreasing the re-evaporation opens up for convective
self-aggregation (Fig.6.1).
Aggregation3 appears at re-evaporation rates between 20% (Evap02) and 60% (Evap06)
of the realistic rate used as control simulation (FullEvap), which can be seen qualita-
tively by observing the persistently inactive sub-regions opening up in the respective
panels, over the first three days (Fig. A.1).
In the Evap02 simulations a more ’band like’ aggregation state forms, where rain cells
align in a chain (Fig. 6.1, day 4). In the NoEvap a reaction-diffusion-like coarsening
dynamic seems to emerge [WH19][CM13], forming small dry and moist patches that
gradually grow and merge to larger structures (Fig. 6.1, E). Comparing mean rain
intensities I(t) shows, that I(t) does neither continuously increase or continuously
decrease with the re-evaporation rare (not shown)4. Simulation with 60% of the
re-evaporation show higher sI(t) (see glossary, 2) than the control simulation with

1Later we show, that the qualitative dynamics are similar for coarser resolution (Sec. 6.1.3),
which allows to investigate larger domains and numbers of convective events with similar com-
putational effort.

2again, by reducing the ventilation coefficients in the Seifert scheme
3How aggregation can be measured is introduced in 4.2
4Investigating this observation further is out of scope for this project and would need additional,
longer simulations.
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6.1. Analysis of aggregation dynamics based on rain tracking

Figure 6.1.: Humidity pattern depending on the re-evaporation of rain.
This reproduction of figure one in [BH19] shows the specific humidity within the
lowest model level at 50 m height, which shows different patterns, depending on the
fraction of re-evaporation (’Evap’) compared to realistic evaporation rates (FullEvap,
with ’Evap’ = 1). Typical aggregation patterns occur for ’Evap’ = 0.2 or less.

realistic re-evaporation. The 20% re-evaporation case has significantly reduced I(t)
and the 10% re-evaporation case even slightly lower values (not shown). In contrast,
I(t) is highest for NoEvap (always considering the interval of the shortest simulation,
Evap01). We observe, that dry and moist patches for Evap02, Evap01 (Fig. 6.1, C,
D) are larger than in NoEvap 5, which could be linked to the reduced domain mean
rain intensity.

6.1. Analysis of aggregation dynamics based on rain
tracking

This section analyses the dynamics of rain clusters, detected with the rain tracking
algorithm (details: Sec. 5.3). First of all, the qualitative difference in the rain
field between simulations with and without CPs is presented (Sec. 6.1.1). We
subsequently describe observed merging (Sec. 6.1.2) and discuss the effect caused
by changes in model resolution (Sec. 6.1.3).

5It would be interesting to explore, whether there is any (self)-similarity between the pattern
occurring in Fig. 6.1, C, D and 6.1 E.
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Figure 6.2.: Rainfall pattern I(x,y,t) contrasted for FullEvap (a) and NoE-
vap (b) cases with 200 m resolution and NoEvap case with 1 km resolution
(c). Active pixels (glossary) above a 0.1 mm h−1 rain threshold are plotted every
three hours, for the FullEvap (a) and NoEvap (b) case. Colour shades indicate
the relative time within the simulation, ranging from the early stage (blue) to the
final state (yellow). With realistic re-evaporation, no aggregation occurred in the
simulated period of 15 days on the small 96 km× 96 km domain. In contrast, in
the absence of CPs the simulation aggregated in less than eight days. At that time
rain is restricted to one single contiguous area. Within the transient approach to
aggregation, spatially separated rain patches move towards one another, a dynamic
that leads to tree-like merging. Other rain patches decay as their area decreases.
The NoEvap simulation with 1 km horizontal resolution (c) shows aggregation dy-
namics similar to the smaller 96 km× 96 km domain (b), but takes longer to fully
aggregate (nearly two weeks instead of about eight days). Notice that due to the
double-periodic lateral boundary conditions, ’branches’ can leave and re-enter the
domain at the respective boundaries of each lateral dimension, as it is the case when
the final two ’branches’ merge into a single rainy area.
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6.1. Analysis of aggregation dynamics based on rain tracking

6.1.1. Dynamics with and without cold pools (FullEvap versus
NoEvap)

In FullEvap simulations the number of rain cells, detected as Ncluster (see glossary)
rapidly increases with the onset of convection (t ≈ 10 h, until it quickly settles at
Ncluster ≈ 100 (Fig. 6.3, left). Subsequently, Ncluster somewhat fluctuates around this
constant value6 and so does the number of new cells emerging in a ten-minute interval
(’birth rate’, spread around ten), yielding an average lifetime of about 100 min per
rain cell (Fig. 6.3, a). This ’birth rate’ is approximately balanced by merging and
’decay’ of rain cells (Ncluster ≈ constant, Fig. 6.3,b). We use the term ’decaying’
to describe the slow fading of a rain cell, which is indicated by a decrease of the
cluster’s area (A(cluster,t)) and rain intensity (I(cluster,t)). Merging describes a
process where two rain clusters move towards each other, spatially overlap and
result in one bigger cell.
In FullEvap rain cells terminate by decay rather than merging (Fig. 6.2, [MHH19]):
A CP forms through rain re-evaporation and the resulting dry downdraught locally
suppresses further convective updraught. Merging processes do not seem to be a
crucial contributor to the dynamics and might simply result stochastically from
events joining spatially when they are close to each other, without any far-reaching
physical interpretation.

In contrast, the NoEvap dynamic is fundamentally different: After a spin-up stage
of roughly 30 hours, Ncluster monotonously decreases (Fig. 6.3, c) until only one
rain cell remains (final stage, after ∼ 350 h). Interestingly, the maximum number
of rain cells ever reached (Ncluster ≈ 100) is comparable to that in the FullEvap
case. This congruence should be expected, because initial events appear almost
simultaneously when convection starts, so the effect of CPs is hardly present. What
determines the number of initial events should be the global energy constraint of
the RCE simulations (Sec. 4.1.5). In the NoEvap case it takes less than three days,
until hardly any new rain cells emerge. Again, two processes reduce their number:
decaying and merging.
In the NoEvap simulations, merging is the dominant dynamic after 150 h (Fig. 6.2).
Stages before 150 h are generally more noisy and decays are detected more often than
merges, leading to a fraction nmergesNoEvap

ndecaysNoEvap

≈ 2
3 over the entire NoEvap simulation. As

mentioned, merging hardly plays a role for FullEvap, leading to nmergesF ullEvap

ndecaysF ullEvap

≈ 1
40 ,

which is more than 25 times smaller than the merging fraction in the absence of
CPs (NoEvap case). Interestingly, Patrizio and Randall found pairwise merging
when analysing CSA on much larger domains up to 6.144 km with 3 km resolution
[PR19], where the influence of CPs should be minor (more Sec. 7.3.3).

6Therefore we did stop the simulation after 150 h to safe computational cost.
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Figure 6.3.: Comparing statistics of FullEvap (a,b) and NoEvap (c,d)
simulations. Panel a), c) compare the number of rain cells and the emergence of
new ones (green). Panels b), d) show the count of the two processes, that reduce
the number of rain events: Decaying and merging. We suppose merging does not
play a crucial role in FullEvap, but is characteristic for the NoEvap, where merging
is the dominate dynamic from roughly one week on.
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6.1.2. Merging
For NoEvap simulations merging seems to be non-random and crucial within the
transient approach to the fully self-aggregated state: When long-living rain cells
merge, they move towards one another, spatially connect and become one bigger
rain cell. The merging dynamic is visualised in the animation of rain clusters (sup-
plement material) and in Fig. 6.4.
Generally, area A(cluster, t) and rain intensity I(cluster,t) tend to increase after a
merge (Fig. 5.4). Moseley, Henneberg, and Haerter suggested before, that big rain
events resulting from several merges show higher rain intensities. The investigation
of these merging effects is very relevant, since it could be linked to extreme precipi-
tation events [MHH19].
However, the physical mechanism driving this merging is not fully understood yet.
One aspect could be the moisture field, which builds ’bridges’ between two moist
patches, thus areas corresponding to different convective cells become connected
(Fig. 6.9). Further, we propose that cloud-radiative feedback, known to drive CSA,
could also facilitate the merging (Sec. 8.1). Possible mechanisms driving the merg-
ing based on the surface wind field are discussed with Sec. 7.3.3. With future
work, we aim to capturing this merging dynamic in our model (Sec. 7.4) and find
data-based physical explanations.

6.1.3. Resolution
Coarser resolutions are known to favour CSA [Win+17]. One aspect might be,
that coarse resolutions insufficiently resolve CPs (Sec. 4.1.7) which inhibit the ag-
gregation (Sec. 4.2.4). Irrespective of the 1 km or 200 m resolution, our data shows
self-aggregation in the NoEvap, but not in FullEvap. The dynamics are qualitatively
similar between 1 km and 200 m resolution, but full aggregation occurs more quickly
on the smaller domain with finer resolution (compare Fig. 6.2 to Fig. 6.2).Since
coarser resolution allows to investigate larger domains at equal computational cost,
thus more convective events at the same computational cost, we focused most of
our analysis on the 1 km simulations. Former studies suggest that in the absence of
CPs, aggregation strength decreases with smaller domain size [JR13]. Nevertheless,
we observe very fast and pronounced aggregation for a very small NoEvap 240 km
domain at 1 km resolution, but did not compare the aggregation degree between
NoEvap simulations quantitatively.

6.2. Oscillations
We detect strong temporal oscillations in domain I(t) and cluster integrated rain
I(cluster,t) for NoEvap simulations (Fig. 6.5). On one hand, these oscillations
complicate the detection of rain clusters, on the other hand the oscillations are an
interesting phenomenon in themselves.
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6. Data analysis

Figure 6.4.: Pairwise merging of rain cells The rain cluster tracking (Sec 5.3.2)
allows to visualise the merge history of rain clusters as trees. Here, the size of a
tree node scales with the mean area of the cluster A(cluster) and the branch length
scales with the time between the onset of clusters (written in green). Note that time
increases from right to left. The horizontal axis below shows the time difference
since the start of the earliest rain cell, merging into this tree. The vertical axis has
no interpretation and simply aligns the nodes in a way that prevents the intersection
of ’links’. This example illustrates rain cells persist for many days until they merge
to one subsequent cluster, which is usually larger than its two predecessors.
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Figure 6.5.: Temporal oscillations in rain intensity I(t) (a) and detailed
visualisation of I(cluster,t) (b) and A(cluster,t) (c) for the final stage.
Once only one rain cell remains ( 350 h), a significant increase in oscillation ampli-
tude occurs, possibly linked to radiative feedback (Sec. 8.1). This final stage of
the simulation shows strikingly regular oscillations in cluster averaged precipitation
I(cluster,t) (b) with periods between 10 h-11.5 h. Filtering prevents oscillations in
A(cluster,t), which otherwise would oscillate with comparable periods (c) and allows
us to focus on the underlying dynamics.
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6. Data analysis

Figure 6.6.: Distribution and magnitude of CAPE are qualitatively similar
over the FullEvap simulation. Circles of low convective potential indicate a dry
CP inhibiting new convection after rainfall. Sometimes these circles are framed by
rings of high CAPE, indicating areas where new convection is favoured.

We use filtering that smooths the temporal oscillation in A(cluster,t) oscillations
(Fig. 6.5, c). This filtering allows an analysis of the slow dynamics and of how cluster
area increases with merging (Fig. 6.4). Nevertheless, filtering hardly influences the
rain volume (Fig. 6.5, b). I(t) oscillates irregularly (Fig. 6.5, a) since the oscillations
of individual rain cell are usually neither in phase nor do they have regular periods7.
In the final aggregated state, oscillations in I(t) ≈ I(clusterfinal,t) are very regular
with periods about 10 h. These oscillations are discussed further in chapter 8.

6.3. CAPE
As visualised before (Fig. 6.2), the convective dynamics is fundamentally different
when the re-evaporation of rain is suppressed. ’Normal’ convection is accompanied
the strong downdrafts of CPs, that create circular patterns of low CAPE between
a certain minimal radius Rmin and a maximum radius Rmax around the centre of
convective cells (Fig. 6.6). This limits the persistence of individual convective cells,
so the spatial distribution of convective cells changes. The qualitative dynamic and
magnitude of CAPE stays constant over the simulation: besides their inhibiting ef-
fect, CPs promote convection at specific radii Rmax away from convective centres,
corresponding to high CAPE regions.

When CPs are absent (NoEvap), persistent areas of positive CAPE form (Fig. 6.7).
Here, CAPE decreases monotonically with distance from the centre of convective
regions and rainfall I(x,y,t) is limited to areas of positive CAPE. As aggregation

7It seems that multiple factors influence and interrupt the periodicity of these oscillations, thus
a Fourier analysis of the oscillations did not provide convincing results.
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6.3. CAPE

Figure 6.7.: NoEvap aggregation dynamics of CAPE and surface rain in-
tensity I(x,y,t) Convective dynamics are qualitatively differ from FullEvap (com-
pare Fig. 6.6): Rain (bottom) is limited to very isolated areas of positive CAPE
(top). These areas grow over time, and their number is reduced by decaying and
merging of convective cells. Qualitatively we observe that domain-averaged CAPE
reduces over the simulation, which might be linked to increased static stability in
the upper layers. CAPE was calculated with the algorithm introduced in Sec. 5.4.

proceeds, the number of regions with CAPE>0 decreases. Considering a late stage
after 330 h of the simulation (Fig. 6.8): only two rain events are left and located
in the only two regions of positive CAPE. Positive CAPE is spatially correlated
to a low energy barrier CIN (Fig. 6.8,b) and high relative humidity in low layers,
necessary to ’feed’ the convection (Fig. 6.8,e). The rest of the domain can be seen
as a ’desert’ area where no convection is possible, since the LFC is never reached
and thus no CAPE can be generated.
In this concrete implementation (Sec. 5.4) this means that the level of free con-
vection (LFC), where temperature profiles of a moist adiabatically lifted test parcel
and the temperature profile of the background environment intersect (Fig. 6.8, g),
lies above the highest simulated level.

In regions where it is present, CAPE seems to reduce over the course of the sim-
ulation. Such an increasing static stability of the atmosphere might be linked to
increased static stability in the upper layers, resulting from very persistent convec-
tion. Studies state (Sec. 4.1.2, [XE89] [Bet82]) that in RCE the tropical atmosphere
tends to organise towards a moist adiabatic vertical temperature profile (Sec. 4.1.5).
This implies very low CAPE as the difference between the moist adiabatic temper-
ature profile of a test parcel and the background temperature profile of the tropical
atmosphere would vanish. We suggest that an infinitesimal departure δCAPE from
the moist adiabatic profile could determine where convection occurs: δCAPE > 0
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Figure 6.8.: Convective parameters in nearly fully-aggregated NoEvap
CAPE (a), CIN (b), LNB (c), LFC (d), relative humidity q (e) and rain intensity (f,
logarithmic plot of I(x,y,t)) after 330 h and temperature profiles for the special case
when the LFC is never reached (g). Analysing these parameters shows, that con-
vection seems restricted to two discrete moist areas only (e, humidity at z ≈ 50 m),
where the last two remaining rain cells are located (f). In the rest of the domain
the LFC (d) is never reached, thus the temperature profiles of a moist adiabatically
lifted test parcel and the temperature profile of the background environment never
intersect (g). No rain falls in these ’desert’ areas, and CIN (b) is set to 500 J (yel-
low). For these regions a continuous energy supply would be needed to lift a test
parcel through the height of the atmosphere. Here, the LNB (c) has no validity,
since free convection never occurs. The raining areas show CIN close to zero and
the LNB (c) lies above 3 km.
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could enable an updraught, whereas δCAPE < 0 could coincide with the ’desert’
regions that are dominated by subsidence (Fig. 6.9). Nevertheless, if CAPE is small
the question arises what actually does drive the convection. We suppose dynamical
effects of persistent circulation could be an important driver (Sec. 6.4).

The combination of an increasing static stability and (partly) dynamically driven
convection could possibly explain, why smaller and isolated convective areas seem
more likely to fade (Sec. 6.4), which is discussed in Sec. 6.4.3. In conclusion, the
convective areas with δCAPE > 0 are more consistent and informative than the
rainfall. This suggests to take additional physical properties into account, in order
to investigate the dynamic towards aggregation. The following approach focuses on
the dynamics and analyses the flow of the low layer velocity field.

6.4. The low layer velocity field

We investigate the instantaneous simulated velocity field to define a ’basin of at-
traction’ for each convective cell (Sec. 6.4.1.). We devise a method to numerically
identify these basins and to track them from one time step to the next (Sec. 6.4.2)
and discusses a possible advantage of larger basins to persist over time (Sec. 6.4.3).
Finally, we discuss the spatial dynamics of updraughts, corresponding to each basin
(Sec. 6.4.4).

6.4.1. Analysis of the stationary flow field

As shown above (Sec. 6.3), rain is limited to a discrete number of convective re-
gions with δCAPE>0 (Fig. 6.8). These convective regions correspond to strongly
localised updraughts (Fig. 6.9, c). The remainder of the domain shows gentle and
homogeneous subsidence, which due to continuity (Eq. 7.2) must exactly balance
the updraughts. Dry regions show horizontal divergence and low wind speeds close
to zero (Fig. 6.9, b). Within these dry and non-convective regions a strong horizon-
tal velocity gradient points towards the moist updraught regions. Generally, wind
speed determines the low layer moisture flux above a homogeneous moisture reser-
voir (see Sec. 5.1), which implies a moisture transport out of the dry regions towards
the already moist regions of convective updraughts. The updraughts’ dynamics are
quite stationary. We can locate updraughts by following the streamlines of the low-
level horizontal flow (Fig. 6.10). These updraughts’ locations are the basis for our
model that compresses the information of the velocity field to a distinct number of
objects (chapter 7).
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Figure 6.9.: Instantaneous field of horizontal velocity v(x, y)|z≈50 m (a),
horizontal wind speed |v|z≈50m (b) and vertical velocity w(x, y)|z≈50 m (c)
at 300 h. (a) Streamlines are coloured with relative humidity q(x, y)|z≈50 m, start
from dry areas (yellow) of divergence and converge towards moist areas (dark
blue). The dry regions (a), corresponding to minimal wind speeds |v(x, y)|z≈50m
(b). This |v(x, y)|z≈50m increase with radial distance from the centres of dry regions
towards the moist centres of horizontal convergence. These convergence centres
correspond to areas of updraughts (c), that is, vertical divergence. Surface rain
(I(x,y,t)>I0=0.5 g kg−1, plotted in black, c) is limited to these convective updraught
regions. Outside these regions mostly subsidence (w(x, y)|z≈50 m<0) dominates.

Figure 6.10.: Streamlines of the horizontal velocity above basins of attrac-
tion. Red stars mark the updraughts, which are sinks and centres of convergences
in the horizontal flow of their corresponding basins. All properties are detected with
the algorithm introduced in Sec. 5.5.2.
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Figure 6.11.: Temporal development of basin areas A(t)basin. The area of
a basin corresponds to the height of its colour coded area, which are stacked above
each other. Notice that the basins are domain filling.
Thus, A(t)basin increases as the number of basins N(t)basin decreases over time. The
first 150 h show an very unclear picture of many, often short lasting convective cells.
Smaller basins gradually decay, causing larger basins to gradually grow. Significant
increase in area is observed in discrete steps, when two basins merge.
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6.4.2. Development of basin areas over time
The following describes how the velocity field changes over time, as aggregation pro-
ceeds. Change can be measured by a decreasing number of updraughts, by different
positions of their centres and changing area of the corresponding basins.

Because the number of currently detected basins (N(t)basin) decreases over time (Fig.
6.11), on average the area of individual basins (A(t)basin) has to increase, since the
basins are space filling: ∑iA(t)basini = Adomain.
Concluding, domain area Adomain = 480 km × 480 km = 230 400 km2 divided by
N(t)basin represents an average basin area: Adomain

N(t)basin
= A(t)basin, which is plotted

black in Fig. 6.11.

Despite a continuous increase of A(t)basin, the individual areas A(t)basini
differ and

so does the development of the corresponding basins:
Smaller basins seem to gradually decrease, causing larger basins to gradually in-
crease. Significant increase in area does not result from such ’growing’, but takes
place in discrete steps, when two basins merge to one (Fig. 6.11).

6.4.3. Discussing possible advantages of larger updraughts
Larger convective cells show wider circulation and faster wind speeds in the inflow
area (Sec. 7.6), corresponding to larger A(t)basini

. We suppose a general advantage
for the convection of larger updraughts persist over time and suggest an explanation
in the following:
When moist air rises, it is further accelerated by latent heat release, creating a low
pressure and a pull towards convective regions in low layers, resulting in stronger
horizontal wind speed which generally8 can collect more moisture (bulk formula, Eq.
4.9, Sec. 4.2.3). Such a positive feedback loop could increase the separation of dry
and moist areas: More moisture is transported towards stronger updraughts, which
then further accelerates the updraught and promotes already larger updraughts.
Meanwhile, these larger updraughts have a stronger heating effect on the free tro-
posphere: Due to the weak temperature gradient approximation (Sec. 4.1.6) this
heating energy will be spread laterally by gravity waves and thereby reduce the
vertical temperature gradient and thus convective potential (Sec. 6.3, Sec. 4.1.2) of
the domain, including regions of weaker updraughts.
Larger updraughts with larger and faster inflow could provide the energy needed
to overcome CIN dynamically and keep their convection going. Smaller convective
cells with weaker circulation could be more likely to decay as the static stability in
the atmosphere increases (Sec. 4.2.3).
Such a decay is indicated by a decreasing inflow accompanied with decreasing basin

8Once humidity is close to saturation, the moisture content does not increase with wind speed
anymore.
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areas (Fig. 6.11).

In addition, we observe that rainfall usually stops several hours before the circula-
tion decays. By design, a global radiation constraint (Sec. 4.1.5) limits the total
rainfall Itotal(t) on the domain. Therefore, this total supply of rainfall has to be par-
titioned among the different convective cells9, which can interact via gravity waves
(as suggested above). Consequently, increasing rainfall I(cluster,t) and convection
in larger basins affect smaller basins adversely.

6.4.4. Laterial updraughts dynamics
We further observe that the lateral positions of updraught centres are not stationary
over time. Updraught centres move around with typical speeds up to 1.4 m s−1

( 5 km h−1) for stages after 150 h (not shown). These later stages have fewer basins,
which are more persistent and the convergence at the lowest level is less ambiguous
to analyse. Again, we observe a tendency of updraughts to move towards each other
and fuse to one convective cell. Based on these observations the dynamics of a
phenomenological model can be developed.

6.5. Dynamical scaling
Craig and Mack present a coarsening model (Sec. 4.3.3, [CM13]), based on the re-
evaporation of rain as the crucial re-moistening effect in the positive feedback loop
towards CSA. Interestingly we observe strong aggregation in NoEvap simulations,
where the re-evaporation feedback is explicitly suppressed.

When comparing their results to CRM data, Craig and Mack refer to a study
provided by Posselt et al.[Pos+12] which simulates large channel-like10 domains of
180 km expand in the meridional and up to 10.000 km in the zonal direction (details
in [PVS08]). These channel domains are simulated in an RCE framework, aiming to
investigate the response of the tropical hydrological cycle to surface warming. Based
on a Hovmöller plot (Fig. 2, [Pos+12], OLR for different SSTs) Craig and Mack
suggest a qualitative measure to estimate a dynamical scaling factor: An average
patch area Ap is obtained by dividing total domain area by the count of dry and
moist patches, so that in the course of aggregation Ap will increase. Craig and Mack
obtain a power law dependence of the Ap on time t (Ap ∼ tα̃, area scaling (AS)).

9Therefore significantly higher I(cluster, t) values are reached for the last remaining convective
cell

10Channel-like domains are a common compromise, since a 3D domain needs to be large enough
to not constrain the behaviour of the convective ensemble, but usually available computational
resources are limited. Nevertheless, it is not known exactly how such a change in geometry in-
fluences the results. We experimented with a channel-like NoEvap simulation, which aggregated
very fast within a few days.
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Assuming that the AS is roughly proportional to length scaling (LS, A ∼ L2) implies
a power-law LS too: Lp ∼ tα̃. For this LS, Craig and Mack state the scaling factor of
the simulation with highest SST (302 K) is similar to the scaling obtained from their
model: α302 K = 0.44 ≈ 0.5 = αmodel. Despite higher SST was found to promote ag-
gregation speed in some models (Sec. 4.3.2, [EWV14]) the cooler simulations seem
to yield larger scaling factors, e.g. α330 K = 0.74 and α298 K = 0.81. Posselt et
al. argue that cooler simulations show a different divergent mid-layer circulation11,
which transports moisture from moist to dry regions more systematically. Craig
and Mack speculate that since replacing diffusive mixing by hydrodynamic stream-
ing flow leads to larger scaling exponents in theoretical coarsening models [Bra03],
this change in divergent circulation could lead to larger α despite lower SST.

With respect to the suggested importance of the mixing term, it seems reasonable
that our NoEvap simulations, which have little mixing dynamic, show a very different
LS. To derive a comparable measure to the counting method suggested by Craig and
Mack, we start by calculating the inverse of the number of convective cells ( 1

N
). We

derive 1
N

for both our methods and calculate N(t)cluster and N(t)basin for the interval
30 h < t < 310 h, which starts after the spin-up and ends before less than three rain
cells are left.
Notice, that 1

N(t)basin
is a normalised version of dividing the domain size by N , pro-

viding a temporal area scaling (AS) (compare to A(t)basin, Sec. 6.4.2). To obtain a
LS comparable to the results of Craig and Mack, we suggest to approximate basin
areas a circular shape. Furthermore, we derive a measure for the AS by calculat-
ing 1

N(t)basin
and derive a similar measure 1

N(t)cluster
, although we are aware that the

rain clusters are not domain filling. We find that over the first 130 h, 1
N(t)basin

fol-
lows an exponential fit (Fig. 6.12, black), which indicates an exponential AS and
thus an exponential LS, again assuming roughly circular basin shapes (exp(LS) ≈
exp(AS1/2)). We suppose the exponential time dependence could be linked to dom-
inating stochastic processes in this early coarsening stage.

The curve 1
N(t)cluster

leaves the exponential fit earlier (100 h), for which we suggest
multiple explanations.
First, for 30 h < t < 100 h we detect N(t)cluster > N(t)basin. We suggest that in
this time interval, several detected raining patches could result from the same con-
vective cell or that the updraught-sinks are too close to each other be detected as
distinct basins. After about 200 h N(t)basin > N(t)cluster, which relates to the fact
that updraughts (basins) are usually still present after the corresponding rainfall
(rain cluster) already decayed (Fig. 6.12).
Concluding, we observe a temporal shift between the two measures. In addition,
rain clusters not only increase in area, but also the rain density inside the clus-
ter area increases (not shown), which makes it more complex to obtain a scaling
11A divergent mid-layer circulation is discussed to be necessary for CSA to developed [MH12]
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for the actual change in convective activity. Nevertheless, results are qualitatively
comparable between methods and we unambiguously do not observe any power-law
scaling. Thus, an LS comparable to t1/2 (AS ≈ t, Fig. 6.12, green), as Craig and
Mack propose for the early coarsening stage, is not valid here. Whether or not later
coarsening stages (after 150 h) could show similarity to such a power-law can not
be answered at the moment, due to the limited amount of data and resulting smallN .

Interestingly, Windmiller and Hohenegger repeat their claim of an universal LS in
the evolution of CSA ([WH19], 2019). They investigate scaling parameters for es-
tablished CSA models (Sec. 4.3.4) and RCE simulations performed by Hohenegger
and Stevens[HS16]. After a spin up of roughly one day the average autocorrelation
length of these simulation are claimed to follow the mentioned t0.5 scaling parameter,
assumed for the coarsening process. Longer simulations show departure from t0.5

for later stages. This departure suggests coarsening becomes less important, which
is in line with our hypothesises, that later stages are dominated by the interaction
between individual convective cells.

Notably, Windmiller and Hohenegger observe a more rapid increase in LS for early
stages of different simulations and models, which limits the significance of t0.5 to spe-
cific intervals of coarsening processes12. In general, we suppose observing a ’faster’
LS increase than Craig and Mack in our NoEvap simulations, could coincide to the
absence of CPs, since CPs are known to inhibit CSA.
Future work will improve our analysis of the spatial scaling with larger data sets
and systematic parameter optimisation for the simulation interval, considered for
the dynamical scaling (Sec. 5.5.3).

12If this t0.5 intervals significantly change between simulations and models, the claim of universality
could be questioned.
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6. Data analysis

Figure 6.12.: Dynamical scaling of 1
N(t)basin

and 1
N(t)cluster

typical for coars-
ening processes (NoEvap simulations). We offer exponential fit for 1

N(t)basin

(black) and 1
N(t)cluster

(red) with 30 h < t < 100 h. The green dotted line presents a
linear area scaling, as suggested by Craig and Mack. We state that any power-law
dependence is not valid for the early stage of coarsening we observe in our NoEvap
simulations.
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7. Model
Our goal is to define a discrete and compressed representation for the velocity field
analysed in Sec. 6.4. Therefore, we will assume very localised updraughts, balanced
by homogeneous subsidence. The theoretical basis is introduced in Sec. 7.1. We
show that our approach is in line with the Navier-Stokes-equation and introduce
a Poisson equation, which derives the velocity field from a given updraught dis-
tribution. A solution of this Poisson equation is derived analytically in Sec. 7.2.
Section 7.3 sketches how the model is implemented. We continue with a suggestion
on how this static model could be expanded into a dynamical model that captures
the movement and merging of updraughts (Sec. 7.4). Finally, we briefly evaluate
our model and align it to the state of the art (Sec. 7.5). The data referred to in
this chapter is always the 480 km×480 km NoEvap simulation with 1 km resolution.
The essence of the model is visualised in Fig. 7.1 already, to give an idea where this
chapter leads.

7.1. Theoretical basis

7.1.1. Motivation of the model
The data analysis (Sec. 6.1) showed that precipitation is very localised and limited
to few convective regions. To derive a measure that is not influenced by the strong
oscillations seen in rainfall intensity, we track the convective updraughts instead of
rain cells (Sec. 6.4). We aim to develop a compressed description of the instanta-
neous horizontal velocity field (always ~v(x,y)|z≈50m in this chapter, Fig. 6.9). The
approach is to reconstruct the low-level horizontal wind field from a discrete set
of localised sinks which correspond to the convective updraughts. Location and
strength of these sinks are extracted from the data.

∂~v

∂t
+ 1

2∇(~v · ~v)− ~v × (∇× (~v) = −1
ρ
∇p (7.1)

To do so, we start with the Euler-equation above (Eq. 7.1), which is a formulation of
the Navier-Stokes-Equation (NSE). The Euler-formulation describes inviscid fluids
and is commonly used to approximate a flow of the atmosphere [Hol73]. It is the
momentum equation for a frictionless flow, which combines with the thermal energy
equation and the continuity equation to a system of partial differential equations.
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7. Model

Figure 7.1.: Striking similarity between original simulation data stream-
lines (a) and our model reconstruction of the flow field (b). The following
summarises the essence of our model: First, updraught locations (xi, yi), which are
sinks in the horizontal velocity field ~v(x,y)|z≈50m (red stars) are extracted from the
data (algorithm: 5.5.2). The second information needed is the area Adata

basini
of the

corresponding basin of attraction (i = 1...6, see legend), which is indicated by the
background colouring. Together, these numbers (xi, yi, Adata

basini
, i = 1...6) define six

discrete objects, from which the ~v(x,y)|z≈50mcan be reconstructed. First we place
a point-like updraught at each sinks location, whose strength in determined by a
factor s ∝ Adata

basini
. Then we detect the inflow areas (background colouring) of the

sinks in the reconstructed flow and show that these coincide well with the data.
Furthermore the absolute value of velocity is captures well too (Sec. 7.6)
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7.1. Theoretical basis

7.1.2. Define Poisson-equation which determines the horizontal
flow field

Our model will allow to reconstruct the essence of the convective dynamics in the
absence of CPs, starting from a discrete distribution of updraught locations and
strengths. We show that our approach does not cut across the Navier stokes equation
(Eq. 7.3), if we make the initial assumption of a stationary constant density flow.
It is reasonable to assume a stationary field and neglect the partial time derivative
in Eq. 7.3, since we aim to model the flow at a single time step, corresponding to a
’snapshot’ of horizontal velocities. Claiming a constant density flow is in line with the
commonly-used Boussinesq-approximation for the well-mixed lower boundary layer:
This approximation implies constant density everywhere except for the buoyancy
term and therefore implies a constant density flow in the horizontal layer.
The density change of a parcel following the flow is given with the total differential:

dρ

dt
= ∂ρ

∂t
+∇ · (ρ~v) ,

Here, ρ is the fluid density at a given position and time, ~v = (u,v,w)T is the three-
dimensional velocity vector. The two terms on the RHS represent local and advective
density changes. The density along a trajectory changes with the divergence of the
flow. Since we assume density to be constant along a trajectory and a stationary
flow, the divergence of the flow vanishes. The resulting continuity equation links
mass density to the velocity field:

∇ · ~v = −∂ρ
∂t

= 0 (7.2)

Navier stokes equation (NSE)

D~v

Dt
= ∂~v

∂t
+ (~v · ∇)~v = −1

ρ
∇p+ ν∇2~v (7.3)

The total differential d~v
dt

of the flow vector ~v combines the temporal derivative ∂~v
∂t

with the advective term (~v · ∇)~v. The diffusive term ν∇2~v multiplies the dynamic
viscosity constant ν with the Laplacian of the flow (∇2~v = ∆~v). We assume that
density is constant and thus pressure independent, so1

ρ
is only a pre-factor to the

pressure gradient.

The Reynolds number of the flow (Sec. 4.1.1, Eq. 4.2) can be approximated with
a scale analysis to Re ≈ 1013 (deduction in A.3.1, [YB09]). Re � 1 implies rather
small scale turbulence which might be resolved in the 1 km grid of the data, but
is certainly smoothed when we apply the spatial Gaussian filter with a kernel of
10 km (Fig. 6.9). Filtering allows to focus on the bulk movement, rather than local
fluctuations or eddies and results in smooth curl free streamlines corresponding to
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the mean flow (see Fig. 7.1, a). In these streamlines, turbulence is not resolved and
viscosity can be neglected, that is, ν != 0.
Our assumptions allow us to simplify the NSE (Eq. 7.3) by dropping the partial
time derivative (stationarity) and setting ν to zero (neglectable turbulence), yielding
the simplified equation:

(~u · ∇) ~u = −1
ρ
∇p . (7.4)

In general, taking the curl on both sides of the NSE yields the vorticity equation for
the flow described. In this case both sides become zero:

∇× (~u∇~u) = ∇× (−1
ρ
∇p) (7.5)

→ 0 = 0 with rot(div) != 0 (7.6)

Consequently the NSE holds no contradiction towards supposing a irrotational veloc-
ity field, which is in line with our observation of a purely updraught and subsidence
driven flow.

Each rotation free field can be written as the gradient of a scalar field Φ. Therefore
we can write the two dimensional velocity field as

∇× ~v = 0⇔ ~v = ∇Φ (7.7)

The boundary conditions of the simulation are double periodic in the lateral dimen-
sions, but the vertical velocity vanishes at the lower boundary:
w|z=0

!= 0.
Thus at the surface layer, horizontal divergence of air parcels has to be balanced
locally by vertical subsidence:

∂u

∂x
+ ∂v

∂y
= −∂w

∂z
≈ w0 − w1

z1 − z0
≈ −w1

δz
, (7.8)

where δz ≡ z1 − z0 is the height of the lowest numerical model level. To be exact,
w = w1

δz
has to be evaluated at the first level and the horizontal velocity components

have to be averaged over the layer thickness δz to be suitably weighted by the z-
dependent density.

We assign the divergence of the two dimensional horizontal velocity vh ≡ (u, v) field
to the vertical velocity:

∇ · ~vh ≈ −w

Combined with the assumption in Eq. 7.7 this yields

∇× ~vh = ∇ · (∇Φ) = ∇2Φ = −w . (7.9)
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7.2. Solving the Poisson equation

This is a Poisson equation (Sec. 7.1.2) that relates a given vertical velocity field w
to the corresponding horizontal velocity field.

We now assume N point-like updraughts located at horizontal positions (xi, yi), with
i ∈ {1, 2, . . . , N}, and assign a ’strength’-factor of Si to each updraught i.
To represent an updraught distribution that is Si for all N locations (xi, yi) and zero
elsewhere, we use the two dimensional Dirac delta distribution with:
δ(x−xi, y− yi) = 1 for x = xi and y = yi and zero everywhere else. To ensure mass
conversion and imply the domain total subsidence cancel, we further subtract one
from each term in the summation. The resulting updraught superposition is:

w(x, y) ≈
N∑
i=1

si(δ(x− xi, y − yi)− 1) . (7.10)

Poisson equation

Mathematically the Poisson equation generalises Laplace’s equation1 and is obtained
by adding a constant source term to the RHS. Both equations are sometimes referred
to as potential equation, offering a coupling between a scalar potential and a ’sink’
or ’source’ distribution [Sel00]. The Poisson equation is commonly used in elec-
trostatics to derive an electric potential and further the induced field from a given
charge distribution [Nol16]. In gravitational physics, the gravitational potential and
further the gravitational force field is derived from a given mass density distribution.
In our case, we derive the horizontal velocity field from a sink (updraught) distri-
bution extracted from the simulation data. Solutions of the Laplace equation are
always harmonic functions. Thus the solutions of the Poisson equation are harmonic
functions, if the ’source’ is harmonic too.

7.2. Solving the Poisson equation
This section solves the Poisson equation:

∆Φ = w (7.11)

for a square domain with doubly-periodic boundary conditions. We approximate
the delta function with a single narrow peak centred at a given location (xi0, yi0) in
the form: W (x, y) = cos(k(x− xi0)/(2L))2Ncos(l(y − yi0)/(2L))2N . This functional
form allows to solve the equation analytically by first expanding w(x, y) as a Fourier
series and solving the Poisson equation in Fourier space and transforming the result
back to real space.
Since the Poisson equation is straightforward to solve in Fourier space, the mathe-
matical effort lies in finding the Fourier expansion (deduced in A.3.2). The result of

1An example of a Laplace equation is the continuity equation 7.2
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Figure 7.2.: Visualisation of a single modelled updraught. The updraught
(a), which is a sink in the pressure potential (b). Furthermore it is an area of
convergence in the gradient field, derived from this potential (c). This is illustrated
by the path of a random starting point, following the streamlines towards the sink’s
location.

the Fourier expansion is:

W =
∑
k,l

A cos
(2π
L
kx0

)
cos

(2π
L
ly0

)
+ A cos

(2π
L
kx0

)
sin

(2π
L
ly0

)
(7.12)

+ A sin
(2π
L
kx0

)
cos

(2π
L
ly0

)
+ A sin

(2π
L
kx0

)
sin

(2π
L
ly0

)
, (7.13)

with A ≡ 1
L

(
2n
n−k

)(
2n
n−l

)
(

2n
n

)2
4

(1 + δk,0)(1 + δl,0) . (7.14)

Multiple sinks at different locations (xi, yi) are taken into account by adding their
Fourier components, which creates a superimposed potential, where the presence of
one sink does influence the depth of another sink (Fig. 7.4).

7.2.1. Deducing the solution of the Poisson equation
To ensure the periodic boundary conditions, we claim the RHS to be L-periodic
with L being the length of the quadratic domain. We start with one dimension and
choose an L-periodic Ansatz to evaluate how a source at x0 affects location x:

W =
(

1 + cos
(
2πx− x0

L

))N
(7.15)

=
(

2cos(πx− x0

L
)
)2N

with : cos(x− x0)2 = 1 + cos(2(x− x0))
2 (7.16)

The prefactor of two influences the amplitude only, whereas the width of cos(x)N
scales inversely with N . The total updraught strength is a constant that decreases
with N, but is not relevant since the magnitude of interest will later be the gradi-
ent velocity field. In the limit of N → ∞, W would correspond to a point sink in
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7.2. Solving the Poisson equation

Figure 7.3.: Choice of the function W (x), which represents an updraught in one
dimension. The location of this updraught-sink is determined by x0 and the peak
width scales with the exponent N. The limit N → ∞ corresponds to a perfectly
point-like updraught, but is not physically meaningful, because updraughts do have
a spatial extent (as visualised in Fig. 6.9, right).

our doubly-L-periodic domain. We take the more realistic finite spatial extent of
updraughts into account by empirically choosing N in a way that the derived flow
visually reconstructs the data well (discussed further in Sec. 7.3.1). The following
outlines how it is reasonable to expand the function W in a Fourier series.

We assume the Poisson equation (Eq. 7.11) can be solved by the general Ansatz:
Φkl = φkle

ikxeily, such that Φ = ∑
k,l φkle

ikxeily and ∆Φ = − (k2 + l2) Φkl. Also, any
function W can be expanded as a Fourier series, which we do as W = ∑

wkle
ikxeily.

Since these Fourier components are Eigenvectors of the Laplacian operator ∆Φ, we
can state that the Fourier expansion of Φ = ∑

φkle
ikxeily will be a solution to the

equation if and only if:
− (k2 + l2)φkl = wkl and φkl = −wkl

(k2+l2) (and w00
!= 0) is valid for all modes. If

this is true, we can expand the periodic source term W in a Fourier series (solution
deduced in App. A.3.2), which later allows to add different source terms in a simple
way.

7.2.2. Realisation of the model
To initialise our model we start by finding all stable fixed points, which are sinks of
the instantaneous horizontal velocity field, using the algorithm introduced in Sec.
5.5.2. We then record the coordinates (xi,yi) and the area of corresponding basins of
attraction Abasini

. To reconstruct the original field from this discrete information, we
start by finding the Fourier transform (Sec. A.3.2) of the idealised vertical velocity
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7. Model

Figure 7.4.: Illustration of the toymodel output, (N = 25). (a) Updraught-
sink distribution (b) Potential resulting from (a). Notice how ’deformations’ in the
potential minima occur, since the sinks influence each other. (c) The absolute value
of the modelled horizontal velocity vector, associated with ’model speed’. This model
speed is close to zero in the sinks themselves, but forms a ring with a local maximum
in speed around them. This results from the strong slope in the potential, which
drives the flow fast. From these rings the speed radially decreases until it reaches
zero at the local potential maxima, separating the basins of attraction of both sinks.
The stronger the updraught (a), the deeper the sink (b), the higher speed is reached
around the sink (c). (d) Stream plot of the derived gradient field corresponding to
the modelled velocity vector field and coloured with model speed. The pink dots
visualise an example path, following the stationary streamlines from an arbitrary
start towards the second sink.
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field W , which consists of general subsidence and point-like updraughts at (xi,yi),
again with a corresponding strength factor Si ∝ Abasini

. We then solve the Poisson
equation (Sec. 7.2) in Fourier space and take the gradient of the computed potential
field. These steps are the core routine of the model implementation, elucidated
further in Sec. A.3.3. Finally, this field is transformed back into real space, so the
velocity field can be visualised. The resulting streamlines show good accordance
with the original flow (Fig. 6.10).

7.2.3. Proofing the scaling of basins areas with updraught
strength

For each updraught we define the basin of attraction (short: basin) as the set of
points, from where the flow goes towards the fixed point located at the updraught’s
centre. In the limit of N → ∞ it can be shown, that the reconstructed area of a
basin (Amodelbasini

) scales with the ’strengths’ of the corresponding updraught:

Step 1: ~vh is the two dimensional horizontal velocity vector field. The flux of ~vh
through the boundary of the basin of attraction is zero. This results from
the definition of the basins and is illustrated in Fig. A.2.

Step 2: In a conservative vector field ~vh, the Gaussian theorem holds [Bro+12]: the
integral of the flux through the boundary B of a closed surface A equals the
integral of the divergence over its area.∮

B
~vh · ~ndB =

∫
A
div(~vh)dA (7.17)

The line integral is sketched in A.2 and visualises that no flow crosses the
border, thus the net-horizontal divergence is zero, too:
div(~vh) != 0.

Step 3: Since the three dimensional velocity divergence must vanish to satisfy mass
conversation and we make use of the lowest level boundary condition, in each
basin subsidence has to balance the corresponding updraught:
−div(~vh) = wup − wsub

!= 0

Step 4: Each updraught strength is determined by a factor Si. The corresponding
homogeneous subsidence is subsidence speed c times subsidence area: Asubi

=
Amodelbasini

. Thus, every basin area obtained in the model has to be proportional
to the corresponding updraught strength Si:

Si
!= c · Amodelbasini

, → S ′i ∝ Amodelbasini

Usage: We initialise the updraught strength parameter S ′i in our model proportional
to the basin area Abasini

extracted of the LES data.
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We are aware that with finite N , the peak width can cause deviations between the
relative strength (Si/

∑
i Si) of an updraught-sink and the corresponding relative

basin size (Amodelbasini
/
∑
iA

model
basini

). Supposing these deviation could favour larger basins
with deeper potential minima, we consider this is not only an artefact, but could
yield an interesting dynamic itself: The data analysis showed that larger basins seem
to have an advantage and a lower likelihood to decay.

7.3. Implementation of the model
The algorithm implements the analytical solution derived (Eq. 7.15) for given
updraught-sink locations. It calculates the velocity vector gradient field ~vh and the
potential Φ from an idealised field W . The algorithm is structured in three func-
tions, where each function’s input is based on the output of the primer function.
First the joint Fourier components for all updraught-sinks are calculated, second the
Fourier coefficients for the variables of interest are derived and finally the solution is
transformed back to ’real space’. Details of the implementation are given in A.3.3.

7.3.1. Choosing parameters of the toymodel
When simulating a 480x480 domain with 1 km resolution, a Gaussian filter kernel
and basin-detection grid size of ten pixels were used. Accordingly, domain size and
grid size were set in the model and c (Sec. 7.2.3) was set to 0.1. We further scaled
the peak width with N = 25, which derives a flow with close visual resemblance to
the original data (see Fig. 7.1).

7.3.2. Performance of the basin reconstruction
To quantify the accuracy of the basin reconstruction, we compare the basin area at
reconstructed from a simulation sample at time t (A(t)modelbasin ) to the corresponding
basin area of the original simulation data A(t)basin (Fig. 7.5). Again, we calculate
A(t)basini

for every basin i = 1...Nbasin(t) (details Sec. 5.5.2) and initialise the model
by placing sinks with strength Si ∼ A(t)basini

at all extracted updraught locations
(xi, yi). Then, we reconstruct the flow field (Sec. 5.6) and determine the actual con-
vergence towards each updraught-sink location (xi, yi), which is the reconstruction
basin area A(t)modelbasin .

When an updraught-sink is placed at (xi, yi), but the resulting potential minimum
is too ’shallow’ for (xi, yi) being a stable fix-point, no flow converges to (xi, yi) and
A(t)modelbasin = 0 (Fig. 7.5). We observe A(t)modelbasini

= 0 in 11% of the samples (56/520).
A(t)modelbasini

= 0 can occur if a weak updraught with strength Si is located close to
a much stronger updraught (Sj), such that Sj � Si and consequently concerns
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Figure 7.5.: Quantitative evaluation of the reconstructed basin area as
domain fraction When plotting A(t)modelbasin over A(t)basin (for t ∈ {200 h...300 h})
most of the 100 samples are close to line A(t)modelbasin = A(t)basin (red). Each basin is
detected hourly and corresponds to several black crosses. Crosses at A(t)modelbasin = 0
indicate that a basin was not reconstructed for a sample in ti, such that simultane-
ously at ti other basins are detected too large (crosses above red line). Purple/green
shading highlight samples with a smaller/larger derivation δ

[
A(t)modelbasin /Adomain

]
<

0.15 [A(t)basin/Adomain] or δ
[
A(t)modelbasin /Adomain

]
> 0.15 [A(t)basin/Adomain]. Notice

that only the last two remaining clusters can reach the magnitude 0.5Adomain and
that merging can step-wise increase A(t)basin, which explains the ’gap’ around
0.4Adomain.
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Figure 7.6.: Comparison of horizontal wind speed speed |vh|z≈50m in sim-
ulation data (a) and corresponding model reconstruction (b) The instan-
taneous field vh(x,y,t=240 h) is smoothed by a Gaussian filter with spatial kernel
of 10 km (a). Since the model parameters are not optimised on representing the
speed |v| in m/s, the magnitudes are not comparable. But relative speed is recon-
structed well: |vh| increases from basins’ borders towards a horseshoe shaped ring
of maximum |vh| around the updraught-sinks.

relatively small basins (usually A(t)modelbasini
< A(t)modelbasin ) . Since A(t)modelbasini

= 0 is
usually observed a few simulation time-steps before the corresponding basin i decays
or merges anyway, we do not think this artefact is too concerning2.

7.3.3. Discussing the model
We base our model on the assumption, that turbulence can be neglected to char-
acterise the mean flow (Sec. 7.1.2), which we assume to dominate the long term
development of convection. This is implemented for the data by smoothing turbu-
lence with a spatial3 Gaussian filter (10 km) and dropping the turbulence term in
Eq. 7.3 for the model. We argue that due to a high Reynolds number (Eq. A.1),
turbulence is on a much smaller scale than the 10 km grid we use to estimate the
basin areas and therefore does not have to be taken into account. Nevertheless, we
are critically aware that the high Reynolds number is not infinite, and it would be
meaningful to explore the limitations of the assumption ν != 0.

2It should be possible to prevent this artefact by parameter optimisation. On the other hand, it
could be an interesting ’hint’ for the ’fate’ (merging/decaying) of basin i when A(t)model

basini
= 0.

3Since we want to expand the approach to a dynamical model later, it is important not to apply
temporal Gaussian filtering, which would include information of future states in a simulation
’snapshot’ we reconstruct and thus distort our prognosis of future developments (Sec. 7.4).
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Figure 7.7.: Potential landscape and corresponding updrafts Every up-
draught peak (b) is influenced by the presence other updraughts. Linked to their
finite spatial extend, this affects the corresponding potential (a). By design of the
function, Potential minima are wider than the updraught peaks. The potential bar-
rier between updraughts is reduced and the fixed-point in a potential minimum can
become unstable when two updraughts are close.

We show, that our model does not only capture the direction of the simulated flow,
but also displays the spatial pattern of surface wind speed (Fig. 7.6). Again, this
speed is close to zero at the basin borders, areas of horizontal divergence where the
direction of the horizontal flow changes. From these border towards the locations
of the sinks, (xi, yi), the flow accelerates, forming a near-perfect ’ring’ of maximum
speed around each updraught. Imagining velocity as height, this would correspond
to a crater around the updraught. Stronger updraughts are encircled by higher
craters of speed, as expected for an incompressible flow.

Upon closer inspection, the crater is often disrupted by a small side segment of lower
wind speed, both in the data and the model. Imagining an aerial perspective, an
open crater corresponds to a horseshoe shape with an opening that seems to point
towards the nearest neighbour updraught.

To understand this segment of lower wind speed, we consider that local speed is
determined by the local potential slope. By design, the width of a potential minima
is wider than the width of the corresponding updraught peak, which is determined
by the finite spatial extend of the cosine functions (Fig. 7.7, a). Thus, the presence
of an updraught significantly influences the potential landscape in the vicinity of
other updraughts and the potential depth between updraughts is reduced when the
distance is small enough. Consequently, the potential’s slope and thereby the speed
reduces between close updraughts, causing the opening of the craters.
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Figure 7.8.: Schematic sketch of two updraught-sinks (S1 and S2) with
finite expand, encircled by an asymmetric inflow, which results in a net
momentum towards each other. Larger arrows on the sides of S1 and S2 ’turned
away’ from each other correspond to strong inflow areas with high horizontal wind
speed (light grey shading, reminding of a horseshoe shape). In contrast the inflow
between S1 and S2 is weaker (smaller arrows), corresponding to lower wind speed
(’opening’ of the horseshoe). Red arrows indicate the suggested net forcing, moving
S1 and S2 towards each other. This sketch draws upon a hypothesis presented by
Patrizio and Randall, Sec. 7.3.3 [PR19].

As an additional effect, the reduced potential barrier between close updraughts can
cause the fixed point of a potential minima to become unstable. Usually, this is the
case for the weaker updraught with the shallower potential minima. Especially on
respect of working towards a dynamical model, we think of this rather as a feature
than as an artefact.

If two updraught-sinks are close and the fixed point of the smaller minimum be-
comes unstable, the flow goes towards the deeper minimum resulting from the larger
neighbouring updraught. Consequently, the two basins become one, which could be
interpreted as a merge. Previous to a merge, the potential barrier between the two
minima would decrease, leading to pronounced horseshoe shapes with openings to-
wards each other. Concluding, the opening could forecast an approaching merge.

The following links the ’horseshoe shapes’ we observe in surface wind speed to a
study by Patrizio and Randall. Despite their much larger domains up to 6.144 km
with 3 km resolution, some of the mechanism they discuss should be comparable
to our NoEvap simulations, which miss typical small scale dynamics through the
absence of CPs. Patrizio and Randall observed that the circulation seems to organ-
ise in a way, that produces weaker surface wind between neighbouring convective
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cells4, while the wind stays strong on the opposites of the clusters. This asymmetry
in surface wind is referred to as horseshoe shape. Such spatial patterns of surface
winds were discussed in the context of cloud merging before [Tur82] [SK94]. Both
studies suggest the parts of updraughts closest to neighbouring clouds are weakened,
for example by interfering downdraughts causing evaporation and mixing. Weaker
updraughts lead to weaker surface inflow along nearest edges of neighbouring con-
vective cells, which we observe as reduced wind speed in our NoEvap data.
Patrizio and Randall suppose the relatively strong inflow at the outside of neigh-
bouring convective cells (big arrows, Fig. 7.8) and the reduced inflow (small arrows,
’opening’ Fig. 7.8) between them, could cause neighbouring cells to be ’advected’
toward each other. Therefore, they link the horseshoe shaped wind speed pattern
to the pairwise merging of neighbouring convective cells they observe.

Supposing that merging dominates the later stage in the approach of the final aggre-
gated state, we aim to capture this dynamic in our reconstruction. In the following, a
first approach towards a dynamical model is introduced which proposes a movement
of the updraughts towards each other based on our phenomenological observations.

7.4. Towards a dynamical model
In order to turn the compressed reconstruction5 of the flow field into a dynamical
model, we aim to introduce an update mechanism for the updraught-sink locations
(xi, yi). The idea is to propose a forcing on the updraught sinks that has the ten-
dency to move them towards each other, so their corresponding basins fuse once the
updraughts are close enough (Sec. 7.3.3). We assume, where and when a merging
between two sinks occurs does not only depend on their locations ((x1, y1), (x2, y2))
and updraught strengths factor (S1, S2), but on the entire potential landscape.

To take the joint potential into account, we suggest a gravity-like update mechanism,
that again draws on methods commonly used in electrodynamics (see 7.1.2). One
by one, we remove the updraughts and calculate the potential that would originate
from all remaining updraughts. We then take the potential of the location where
the updraught under consideration would have been and derive the gradient for this
one point only. This gradient is a hypothetical velocity vector resulting from the hy-
pothetical field of all other updraughts. We multiply this vector with a hypothetical
time factor that we call ’step-length’ to obtain a displacement prognosis vector. In
further work, this ’step-length’ parameter can be optimised to correspond to typical
displacement distances (Sec. 6.4.4) of updraughts in a given simulation period (for
example one day, Sec. 7.4.1).

4which they refer to as ’clusters’
5Which does have a value on its own
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Figure 7.9.: Prognosis for updraughts’ movements based on a gravity
approach The streamlines of the reconstructed flow (t = 240 h) are plotted above
the corresponding basins of attraction. The red arrows indicated the displacement
prognosis based on the gravity approach with a ’step-length’ factor of 50.

We work towards a dynamical model by taking the idealised reconstruction of a
simulation snapshot and displace the updraughts based on the gravity approach,
which offers an update dynamic for the location. To update the strength factors
Si we calculate the basin areas, that result from the model configuration of the
previous ’step’ (xt−1

i , yt−1
i , st−1

i ). This implementation would create an autonomous
dynamical model. Additionally, the development of this model could be compared to
the actual development from the point of origin in the original simulation data (Sec.
7.4.1). Parameters could be optimised by taking multiple data sets into account, to
prevent over-fitting to one simulation example.

7.4.1. Performance of the update dynamic
We developed a framework (Fig. 7.10) that extracts discreet information of the data,
derives an idealised reconstruction of the velocity field and calculates a prognosis
for the movement of each updraught, based on the gravity approach (Sec. 7.4). To
evaluate the performance of our prognoses they are then compared to the actual
updraught displacements in the data.

To obtain a quantitative comparison, we calculate the angle between our prognosis
vector and the actual displacement vector derived from the simulation data, always
referring to the smaller angle between zero and π. We observe that calculating the
actual displacement after a longer simulation period (as one day) offers a clearer
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Figure 7.10.: Extended version of model implementation flow-chart (Fig.
5.6), illustrating how we aim to predict a displacement vector (Sec. 7.4)
for each updraught-sink and compare this prognosis to the actual dis-
placement in the data. To incorporate an update dynamic to our model, we
could calculate such a prognosis vector, then place the updraught-sink to the result-
ing new location and calculate the resulting basin area, using the former basin areas
as ’strength’ factor input.
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Figure 7.11.: Performance of updraught displacement prognosis The in-
stantaneous flow fields of the simulation period 200 h-300 h is reconstructed and an
arrow indicates the predicted direction of movement based on the gravity approach.
We calculate the angle between our prognosis vector and the actual displacement in
the data 24 h later. Always referring to the smaller angle, we obtain values between
zero and pi. The performance is significantly better than random with a mean angle
below π/2. We further notice, that the quality of the prognosis increases with the
absolute value of both the prognosis vector (a) and the actual displacement vector
(b).
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picture than calculating displacements only one hour ahead. Assuming that noise,
fluctuations and maybe oscillations in the data could influence the short term dis-
placement of updraughts in the simulation, we calculate the displacement after a
time interval of 24 h.

Then we statistically evaluate the angle between displacement prognosis vector and
actual displacement vector for 100 simulation snapshots (100 h-200 h) and find pos-
itive correlations between both directions. Plotting the angle against the absolute
value of either the length of the actual (data) displacement vector or the length of
the prognosis-vector shows, that the performance of the dynamic increase with both
vector lengths (Fig. 7.11). In case of the data displacement vector, this could in-
dicate small displacements to be dominated by noise, whereas larger displacements
in the result from an actual drift. In case of the prognosis vector length (based on
the gravity approach), a short prognosis vector could result from ambiguous forcing
and thus lead to poorer performance than a longer prognosis vector.
Summarised, we developed and implemented the basis for a dynamical model that
will capture the merging dynamic observed in the NoEvap simulations.

7.5. Contribution of our model to the state of the art
Until today, various models with different strengths and weaknesses can only cap-
ture aspects of CSA (Sec. 4.3.2, 4.3.3). Furthermore, these model approaches are
usually field-like and divide the domain into coarse columns. In contrast, we aim to
model CSA on the level of individual convective cells, describing each cell as discrete
convective object.
Similar to previous coarsening models [CM13], [WH19], our approach captures a
progressive increase in spatial length scale, corresponding to increasing basin area
and a reduced number of updraught sinks (Sec. 6.5).
To extract the temporal scaling factor of the coarsening process from data, Craig
and Mack suggest a manual and qualitative method (Sec. 4.3.3, Sec. 6.5). Our
method automatically detects the number of convective cells using our two tracking
algorithms. This becomes relevant when aiming towards a statistical evaluation
of larger data sets (Sec. 8.5), which could then allow to derive simple rules for the
’competing’ mechanisms between basins. Craig and Mack define the final aggregated
state as the stage when only one circular moist area remains. In our approach, this
corresponds to the stage with a singular convective region that owns the entire
domain as its inflow basin. Concluding, their coarsening model and our model both
suggest a ’winner takes it all’ dynamic. But to be exact, our ’winner’ has a history
of merges and is a fusion of several former separated convective events. Therefore,
we introduced an approach towards a dynamical model (Sec. 7.4) that captures this
merging dynamic on the level of individual convective cells.
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8. Discussion
In this chapter we discuss possible physical feedbacks 1 and the possible origin of the
oscillations observed (Sec. 8.1). If not denoted otherwise, this chapter always refers
to the 480 km× 480 km NoEvap simulation, with 1 km resolution. We introduce the
idea of convective oscillators (Sec. 8.2) as a possible framework to explore these
oscillations further. The conclusion (Sec. 8.4) summarises the thesis and motivates
an outlook on future work (Sec. 8.5), which could be based on this thesis.

8.1. Discussion of possible physical mechanism
In general, spreading CPs introduce a spatial scale O(10 km), at which the larger-
scale flow is disrupted: CPs suppress ongoing convection by their negative buoyancy
effect (Sec. 4.1.7). Numerical models of CPs should therefore resolve scales much
finer than 10 km. One can make the reasonable assumption that if CPs are not
resolved due to coarser numerical resolution, as done in "classical" simulations of
convective self-aggregation [BPB04], the dynamics could have similarity to our No-
Evap simulations, which have a relatively fine resolution but suppress CPs by design.
Under the removal of CPs (NoEvap) the larger-scale flow is not disrupted and the
requirement on resolution may therefore be less strict. In conclusion, we expect that
physical mechanisms found to drive CSA at coarser resolutions ([WE14], [EWV14],
[Win+17]) carry over to the current simulation setup, especially radiative feedbacks.

8.1.1. Transient stage
The temporal approach to the final steady state could be seen as a transient stage
towards the aggregated equilibrium. In this transient stage (0 h-350 h), domain-mean
precipitation I(t), lowest-layer wind speed |v(t)|s = |v(t)|z≈50m, surface heat fluxes
lhf(t) and near-surface relative humidity q(t)|s = q(t)|z≈50m oscillate with varying
periods, which are all less than 10 h (Fig. 8.1). Concurrently, we observe oscillations
with more regular and longer periods between 17 h-30 h in the outgoing longwave
radiation OLR(t)TOA. Despite these longer periods, we assume the oscillations in
OLR(t)TOA can be associated with the oscillations in I(t).
Apart from their respective oscillations, each variable undergoes slow longer-term
changes.

1Ideas presented will be followed up with further research in the future
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Figure 8.1.: Development of domain-mean variables
(a) Surface precipitation I(t) and lowest-layer horizontal wind speed |v(t)|s =
|v(t)|z≈50m. (b) Surface latent heat flux lhf(t) and lowest-layer relative humidity
q(t)s = q(t)|z≈50m. (c) Top-of-atmosphere OLR(t)TOAOLR(t)|z≈17500m drops with
the onset of simulation, but increases again after ∼ 70 h exceeding its initial value.
Vertical dashed red lines indicate temporal OLR(t)TOA maxima and times indicate
periods between them.
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With the onset of the simulation, |v(t)|s steeply increases, which we associate with
the low-level convergence induced by the onset of convection. This steep increase in
|v(t)|s is consistent with a steep increase in lhf(t), which seems coupled to the steep
decrease in q(t)s.

We hypothesise that this early convection could be Rayleigh-Bénard like convec-
tion in the boundary layer, which builds non-precipitating clouds roughly between
2100 m and 5500 m (Fig. A.3). These clouds moisten the atmosphere and allow very
deep clouds to form (up to 8800 m height) about 10 h later. Contemporaneous, I(t)
starts to rise with time lag of ∼ 10 h towards |v(t)|s. Clearly, I(t) is not determined
by |v(t)|s only, but shows strong correspondence to lhf(t), which provides additional
buoyant potential energy for convective activity (bulk formula, Eq. 4.9). I(t) peaks
and then drops around 30 h, which is about 10 h after the peak in lhf(t). Notice that
the peak in lhf(t) approximately coincides with the minimum in relative humidity
q(t)s: As the saturation of the atmosphere increases with q(t)s less moisture is ab-
sorbed from the sea surface, which decreases lhf(t) (with lhf(t)∼|v|(t)·[qsat.s -q(t)s],
Eq. 4.9, Fig. 8.1). After reaching its maximum (∼ 200 h), q(t)s decreases, which
enables lhf(t) to enhance again.

Decreasing humidity is typical during the development of CSA: With aggregation,
the majority of the domain is cloud free and the OLR(t)TOA2 increases (Fig. 8.1,
Sec.4.3.2, [WE14]). Initial high values in OLR(t)TOA are associated with little cloud-
coverage in the spin-up stage, thus OLR(t)TOA first decreases as clouds develop
until it increases again after about 70 h. Understanding the development of OLR
(glossary) might require to consider additional variables such as the liquid water
path, ice water path or water vapour path.
Furthermore, OLR is strongly influenced by the vertical cloud and water vapour
distribution: According to the Stefan-Boltzmann law the thermal radiative flux is
proportional to ∼ T 4 (e.g [Lam07]), thus in the warmer lower atmosphere, clouds
and water vapour cause stronger OLR than in the colder upper atmosphere (Sec.
4.2.3, [MH12], [EWV14]). Muller and Held suggested the height of clouds to be
crucial for the development of CSA3.

8.1.2. Cloud effects
Boye Nissen and Haerter (2019) suggest that in the absence of CPs the main drivers
of the NoEvap aggregation are deep convective clouds, which cause a net warming in
the troposphere and thereby promote further convective activity in the surroundings,
but we suppose that the detailed feedback mechanisms are more complex. Espe-
cially, we think understanding the horizontal and vertical distribution of clouds is

2to be exact, OLR(t)z increases for all heights z >11 000 m
3They study simulations with CPs but at coarser resolutions of 2 km, which might not resolve all
CP properties [MH12]
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8.1. Discussion of possible physical mechanism

Figure 8.2.: Profiles of integrated liquid water of the NoEvap simulation

Figure 8.3.: Oscillations of deep cloud fraction l(t)|z≈8000m (a, orange),
shallow cloud fraction l(t)|z≈2100m (a, blue), precipitation I(t) (a, blue),
and liquid water potential temperature Θl(t) at heights z ≈ 5500 m (b,
blue) and z ≈ 11 000 m
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crucial to comprehend the NoEvap aggregation process and the observed oscillations.

With the onset of convection (t ≈10 h) clouds build at intermediate heights, in a
symmetric distribution around z = 4000 m, which is similar to the cloud distribution
in FullEvap (Fig. 8.2). In FullEvap, this distribution does not qualitatively change,
but in NoEvap very high clouds up to 7000 m height build between 10 h and 25 h.
The formation of such deep convection could be associated to the absence of CPs,
which do not disrupt the convective circulation in NoEvap. For 25 h< t <125 h this
deep cloud peak decreases and splits in a deep cloud fraction above 8000 m and a low
cloud fraction around 2100 m, leading to a noticeable bi-modal cloud distribution.
It will be crucial to investigate what causes the intermediate clouds to disappear
(Fig. A.3). One explanation could be increasing liquid water potential temperature
Θl(t) (Sec. 4.1.1) in the middle atmosphere: This warming could reduce the cloud
water, for example Θl(t)z≈5500m increases from 313 K to 320 K over the first 330 h of
the simulation.

Both cloud fractions appear in similar horizontal locations, supposing mechanisms
of deep and shallow convection to be present in the same convective regions, beyond
which little cloud formation occurs.
We further observe interesting anti-phase oscillations between high and low cloud
fractions, as the liquid water content l(t) of individual layers changes. These anti-
phase oscillations become very regular in the final stage, which seem highly corre-
lated to the oscillations in precipitation I(t) (Fig. 8.3).
Within intervals of enhanced deep cloud fraction, Θl(t) increases in the middle at-
mosphere (eg. Θl(t) at 5500 m height in Fig. 8.3). Further, we observe OLR(t)z
oscillates quite in phase with the temperature of the respective height z, for example
OLR(t)z≈5500m is quite synchronised to Θl(t)z≈5500m (compare Fig. A.4). Tempera-
ture above the deep cloud height seems to vary with the longer periods of OLR(t)TOA
(compare Fig. A.4 to Fig. 8.3).

Concluding, we hypothesise cloud and radiative feedbacks cause intervals of deep,
strongly precipitating convection, which warms the middle atmosphere, followed by
intervals of shallow, less precipitating convection, where the atmosphere cools again.
Further analysis is needed to understand how exactly these alternating intervals of
high and low clouds provide a net positive or negative feedback on convection, re-
spectively, but some known cloud properties and their relevance for our simulations
are outlined in the following.

In general, clouds result from convective activity, which increases the temperature of
the atmosphere by vertical heat transport and latent heat release aloft. Clouds can
also have a cooling effect by reflecting incoming short wave radiation (SW), but this
cooling will play a minor role because very little SW is absorbed by the atmosphere
and we prescribe the SST in our simulations. Equally, the effect of surface warm-
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ing caused by low clouds, which absorb heat and re-radiate it back down, can be
neglected. Taken together, we suppose the crucial effect is the cloud-OLR interac-
tion, which causes a net warming or cooling depending on cloud height4, condensate
mixing ratio and temperature (sec. 4.3.2, [EWV14]). Thus, intervals of alternating
cloud height could provide alternating forcing on convection and consequently cause
oscillations in I(t).

8.1.3. Synchronised oscillations in the final aggregated stage
In the final stage, clear oscillations emerge in I(t) ≈ I(clusterfinal,t) (Fig. A.4,
Sec. 6.2) with periods of 8 h-11.8 h. Surface wind speed |v(t)|s oscillates with very
similar periods, but I(t) lags behind |v(t)|s with a quite consistent delay of around 1 h
(A.4, a, black arrows). We claim it is reasonable, that convergence |v(t)|s precedes
precipitation I(t) and not vice versa. Also lhf(t) shows strong similarity to |v(t)|s
and seems to follow the oscillations in q(t)s (Fig. A.4). Remarkably, q(t)s decreases
just after the last merge at 350 h until it oscillates below 0.0105 g kg−1, indicating an
enhanced drying in the final aggregated stage. Overall, we assume the final stage to
be an equilibrium state with a (quasi)-periodic solution and very regular circulation
patterns.

8.1.4. Concluding hypothesises on physical feedbacks possibly
contributing to CSA and observed oscillations

As discussed, precipitation increases in the final aggregated stage, which previous
studies attribute to the increasing OLR and temperature (Sec. 8.1.1, 8.1.3). For
example, Betts and Ridgway relate the observation that domain-mean precipita-
tion increases with warming to radiative constraints (Sec. 4.1.5, other studies eg.
[Tak09], [JR18]). We observe a warming of the atmosphere between 1000 m and
12 500 m height (Sec. 8.1.2), which is further indicated by an increasing OLR(t)
above 11 000 m height. Warming of the middle atmosphere decreases the tempera-
ture gradient towards the boundary layer below. This decrease is in line with the
observed decrease of CAPE over the simulation (Fig. 6.7). The decreasing CAPE
is consistent with Xu and Emanuel (1989), who found that the tropical atmosphere
organises along a moist adiabatic lapse rate (Sec. 4.1.5). In such a state, small
deviations δCAPE > 0 could determine at which horizontal locations convection is
possible.

We suspect dynamical forces to dominate convective processes at the late stages.
This hypothesis is consistent with the strong correspondence between precipitation

4Usually higher clouds have a strong greenhouse effect which amounts to a net warming of the
atmosphere.
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and the low-level wind speed (Fig. 8.1, Fig. A.4)5.

We ask whether there is some correspondence between feedback mechanisms that
reduce CAPE over a long period, and feedback that causes shorter intervals of re-
duced convective activity, associated with the oscillations in I(t). Underlying these
oscillations, we suspect a complex interaction chain of multiple physical variables.
Therefore we focus on the final state with very regular oscillations and hypothesise
the following:
The final stage has a bi-modal distribution of clouds (Sec. 8.1.2, Fig. 8.2), with
alternating intervals of increasing deep clouds or low clouds, where we expect the
deep clouds to cause enhanced precipitation.

Again, due to low CAPE, the energy needed for intervals of deep convection has to
be provided dynamically, by an interval of strong circulation. A strong circulation
is associated with strong low-level convergence. Therefore intervals of high |v(t)|s
and lhf(t) could enable deep clouds to form, which then precipitate about 1 h later
(and subsequently dissipate). The deep clouds could warm the middle atmosphere
due to a greenhouse effect. We then suppose increasing temperature and OLR6 will
reduce the temperature gradient, which inhibits convective activity7. When deep
clouds are removed by precipitation, the greenhouse warming of the atmosphere
decreases. Once the atmosphere is colder, (deep) convection can build again and the
circle repeats. Further work will examine these hypotheses carefully, and especially
consider the two layer model suggested by Emanuel, Wing, and Vincent[EWV14]
(Sec. 4.3.2).
Overall, the hypothesised feedback loop reminds us of typical predator-prey like
dynamics, described by Lotka-Volterra equations [Lot25], [Vol36]), which show very
regular oscillations in the steady state.

8.2. Interpretations as convective oscillators
Oscillations can be seen as, typically temporal, repetitive variations of a quantity
[Str04], which can for example occur when a system is deflected from its equilibrium
state. Then the system is pulled back towards the equilibrium, but exceeds it
and starts to oscillate with a characteristic frequency, as for example the Brunt-
Väisälä frequency for an air parcel that is vertically displaced from its level of neutral
buoyancy (LNB) in stable atmospheric conditions (Sec. 4.1.1).
Such real physical oscillations are always ’damped’, since frictional processes dissi-
pate buoyant energy. Therefore oscillations decay over time unless there is a per-

5The importance of the dynamical convergence and the circulation of individual convective cells
was discussed in Sec. 6.4.3

6Again, in the final stage, Θl(t) and OLR(t) oscillate nearly synchronously to precipitation. (Fig.
8.3).

7It would be meaningful to investigate which temperature and OLR levels are most relevant
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sistent energy supply [LL67], which is, in our simulations, ensured by the constant
heating by the sea surface.

In general, studies showed that systems tend to oscillate when interactions between
components require finite time, hence providing a time-delayed feedback [CY99]. In
our system, such time-delayed feedbacks could be at the core of the spatio-temporal
oscillations of convective cells, because feedback processes in the atmosphere do take
finite time.

To expand on an example mentioned earlier: when a sufficient temperature gradient
is established in the atmosphere, convection starts to transport heat and humid-
ity upwards with typical accelerations around 1 m s−1 (at 1200 m height). After a
characteristic time (∼1 h), clouds develop, which then influence the incoming short-
wave radiation and the outgoing longwave radiation. Depending on their specific
properties8, clouds then either provide a net negative or net positive feedback on
convection (Sec. 8.1). Gravity waves laterally dissipate heat on much shorter time
scales (Sec. 4.1.1), and thereby could provide a coupling between different convec-
tive cells. Droplet coagulation takes time too, leading to an additional time delay
until precipitation starts. Since we suppress the re-evaporation of precipitation9,
I(x,y,t) will not have a major impact on the temperature, but condensed droplets
will also feed back on radiation effects before they fall towards the ground.

As shown before (Sec. 6.2), we do not only observe oscillations in I(t), but also
spatio-temporal oscillations in I(clusterm, t) for each rain cluster m (Fig. 8.4). Com-
bined with the suggested interaction, these individual oscillations associate the pic-
ture of coupled oscillators.

To elucidate this picture, we hypothesise an interaction as follows: Each convective
updraught ui has a convective potential pi, which is fed by near-surface moisture
convergence potential. Cloud formation increases the stability of the atmosphere
(Sec. 8.1, Sec. 6.4.3). Heat is transferred between convective cells via gravity
waves10, which would provide an inhibitory coupling and reduces all potentials pi,
in the simplest case equally in line with the weak temperature gradient approxi-
mation (Sec. 4.1.6). If an updraught ui is no longer strong enough to compensate
this convective inhibition, ui decays, which could be compared to an over-damped
oscillator. To complete this picture, we will investigate further what rules the mois-
ture convergence in each ui’s inflow basin bi and how this is relates to the basin area.

Multiple coupled oscillators are generally complex to describe analytically (details
in A.4.1). Therefore, one approach could be to start with the final steady state, for

8Which themselves are determined by the cooling and heating processes
9And thereby the evaporate cooling effect

10enabling interaction without mass exchange

101



8. Discussion

which we observe synchrony in oscillations of different physical variables11 as I(t),
|v(t)|, lhf(t), q(t) and Θl (Sec. 8.1.3, Fig. A.4, Fig. 8.3).
We suggest to use a type of predator-prey system (eg. [Wan78]) to capture the ob-
served oscillations of the last remaining convective cell in a phenomenological model
of a ’convective oscillator’.

Such a convective oscillator could have a ’predator-like’ variable x(t) mimicking the
precipitation, which increases when sufficient ’convective activity’ builds up. The
second ’prey-like’ variable y(t) could for example symbolise an abstract ’convec-
tive activity’. Alternatively, y(t) could be associated with physical properties, as
surface fluxes and low layer convergence or a sufficient cloud fraction. Some pa-
rameters could be extracted directly from the simulation data: for example x(t)
could lag behind y(t) with the observed 1 h delay of I(t) towards |v(t)|s. In the
resulting feedback circle, increasing convective activity y(t) enhances precipitation
x(t), which then negatively feedbacks on the convective activity y(t). Then y(t) de-
creases, which reduces precipitation x(t) until x(t) is small enough so the convective
activity y(t) increases again. Details of the physical processes causing this feedback
loops would have to be explored with further data analysis.

In a second step such convective oscillators could be coupled. To provide a starting
point for a such a toy model, we now discuss the simulated oscillations of the two
final remaining convective cells.

8.3. Two coupled oscillators
Coupled oscillators are a common association for two related, but different phenom-
ena [Hel+21]. In the simplest case both oscillators affect each other mutually, which
often leads to synchronisation.
If we suppose differences for the interaction between convective cells, for example
depending on their respective rain intensity, this enables diverse dynamic12. The
resulting dynamic depends on the type of interaction, which can be a positive, a
negative coupling, or an asymmetric coupling, and the coupling strengths [Hel+21].
Our discussion above, which invokes a global energy constraint, implies an two-way
inhibitory coupling. In line with an inhibitory coupling, rain intensities of the last
two remaining clusters I(cluster1,t) and I(cluster2,t)13 oscillate with lower amplitude
and reach lower maximum values than the final cluster I(clusterfinal,t) (Fig. 8.4).

11Unfortunately, it is very difficult to discuss ’what causes what’ in a complex synchronised system.
For example causal relations become quite invalid as soon as systems synchronise, since ’cause’
and ’effect’ can not really be separated anymore.

12from synchrony to chaos [Pik+03]
13Since it is a matter of definition which cluster continues after a merge, the ’last cluster’ (cluster1,

navy) is the one reaching a higher precipitation maximum (max(I(cluster1,t))=22 060 mm/h >
max(I(cluster2,t))=15 975 mm/h) in this example.
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Figure 8.4.: Precipitation falling inside the last two remaining clusters
(I(cluster1,t) navy, I(cluster2,t) magenta) and over the domain I(t) (light
blue). After 330 h two rain clusters are left (light grey shading), which then merge
after 350 h (final stage, white background). Vertical dashed lines of respective
colours indicate temporal maxima of the variables and times corresponds to the
periods (arrows) between the respective maxima.

In general, we suppose convective cells with stronger precipitation to oscillate with
longer periods and maybe larger absolute amplitudes. Consistent with this assump-
tion, the stronger precipitating cluster1 oscillates with a longer periods than cluster2
and in the final stage I(clusterfinalt) reaches the highest peaks and the longest pe-
riods (around 10 h, Fig. 6.5). As mentioned, I(t) increasing in the final state seems
also linked to radiative constraints [Win+17].

The oscillations of I(cluster1,t) and I(cluster2,t) are not in phase and could rather
be associated with an anti-phase oscillation between 305 h and 335 h. These out
of phase oscillations cause varying and long intervals between two maxima of do-
main integrated precipitation I(t) (8.1 h − 21 h, Fig. 8.4, light-blue). Interestingly,
I(cluster1,t) and I(cluster2,t) show a tendency to synchronise already (around 345 h)
before they merge (at 350 h). This synchronisation could be a hint that the corre-
sponding convective cells fuse already, before the raining patches overlap.

Again, to investigate the observed interaction further, we suggest to model individual
rain cells as convective oscillators. Each convective oscillator could have a predator-
prey like dynamic (Sec. 8.2) and an inhibitory coupling could be provided between
their precipitation variables x1(t) and x2(t).
Such coupling could correspond to the global energy constraint, limiting the global
rainfall. Negatively coupled oscillators can develop anti-phase synchronisation [Ble88],
which seems to match the interaction of the last two remaining convective cells (Fig.
8.4).
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To expand such a toy model on earlier simulation stages, we would have to consider
Ncluster convective cells and therefore model N coupled convective oscillators. Some
aspects of the suggested two-oscillator model could transfer to such a framework, if
we focus on nearest-neighbour interactions. Another possible simplification would
be, to couple all convective oscillators equally (again corresponding to the weak tem-
perature gradient approximation). The issue of ’N coupled oscillators’ is discussed
further with A.4.1.

8.4. Conclusion
This thesis contributes to the state of the art by providing a detailed analysis of
CSA in the absence of CPs (NoEvap case), which has not been studied in depth be-
fore. When considering CSA as resulting from a bifurcation in a bi-stable moisture
distribution [WH19], we claim that this bifurcation always occurs in the NoEvap
case14, but is prevented if CPs are present (FullEvap). For NoEvap simulations, ini-
tial noise seems sufficient to ’break symmetry’, thus creating a dry spot that triggers
CSA [BH19].

To analyse our simulations, two tracking algorithms are presented, one based on the
precipitation output and one based on the horizontal wind field in the lowest layer.
We observe CSA as a decreasing number of convective cells that either decay or
merge pairwise until only one cell is finally left. Whereas no final physical explana-
tion can be given for the decaying process, we discuss possible feedback mechanisms
and how these could be associated with the observed stability increase of the atmo-
sphere (Sec. 6.3, Sec. 8.1).

Within the transient approach towards CSA we suppose that merging dominates
the dynamic. A hypothetical physical explanation for this merging is an asymmet-
ric inflow of convective updraughts (Sec. 7.3.3). Prospectively, we will capture this
merging in a dynamical model, as suggested in Sec. 7.4. We already implement the
foundation for such an update dynamic: based on a gravity approach a prognosis
vector for the displacement of each convective updraught is calculated. Comparing
this prognosis vector to the actual displacement vector, extracted from the data,
yields significant positive correlations.
Our static model however offers a discrete and highly compressed reconstruction
of the essence of simulated convection, on the level of individual convective cells:
each updraught is characterised by its location and the area of its inflow basin only.
Determining inflow areas in the reconstructed flow field provides very close accor-
dance to the inflow areas of the original data in 464/520 samples. In this context
we implement a framework allowing to divide the domain into ’basins’ converging
14which is in line with Jeevanjee and Romps, [JR13]
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towards each convective updraught for each time of the simulation. These basins
allow to derive a dynamical length scaling, which we discuss in respect to established
coarsening models that describe spatial development of CSA (Sec. 6.5, Fig. 6.12).
The basin framework will be valuable for a systematic analysis of physical variables
involved in CSA.

Furthermore, we describe interesting oscillations in precipitation (Sec. 6.2) and
other physical variables, which we analyse (Sec. 8.1.3) and interpret as coupled
oscillators (Sec. 8.2). Overall, we suspect these oscillations to relate to cloud-
radiative feedbacks driving CSA and aim to investigate these results further within
future work.

8.5. Outlook
We aim to perform a systematical data analysis and evaluate data statistically, based
on the basin framework. Therefore we will simulate larger domains with a larger
number of convective cells, for example a 960 km× 960 km simulation with 1 km
resolution has already been set up. To analyse such larger data sets, we suggest
to improve the basin algorithm as discussed in Sec. 5.5.3. The resulting toolbox
will not only allow to track the number and size of basins over time, but to take
all physical variables of the simulation output into account. For example, we could
detect the basin averaged rain intensity I(basin,t) and investigate how its correlate
with basin area and how these correlations change over the simulations.
Further, we aim to quantify how the low-level horizontal wind speed surrounding
an updraught is linked to the updraught strength and connect this to a relation
between basin area and the likelihood of an updraught to decay (Sec. 8.1). If we
are able to derive a mathematical expression for this relation, we could include this
as an additional update mechanism into our model. Foremost we aim to include an
update dynamic that captures the merging of convective cells. One suggestion is
presented in Sec. 7.4, which only needs a careful investigation of parameters to be
implemented. An phenomenological alternative to mimic merging could be to sim-
ply move updraughts towards their nearest neighbour so the corresponding basins
fuse once the updraughts are close enough.

Additionally, results of the data analysis might allow to derive an analytical model,
capturing the essential physical mechanisms in the transient stage (Sec. 8.1.1). The
final stage could be captured in an oscillator model, with a (quasi)-periodic solu-
tion. As discussed above, a model of two or more coupled oscillators could be sought
(Sec. 8.3, Sec. A.4.1), in order to improve the understanding of oscillations in the
transient stage.

We are aware that NoEvap is generally quite artificial and that our analysis can
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not be strictly attributed to either shallow or deep convective dynamics [Ste05].
This ambiguity is stressed by the bi-modal cloud distribution (Fig. 8.2). Therefore,
it could be interesting to test multiple, very different perspectives on the NoEvap
data. For example, detected basins could be analysed similar to the cellular network
approach suggested by Glassmeier and Feingold, which analyses patterns in shallow
convective clouds. Despite many of the geometric properties not being transferable,
our basins offer domain filling objects with well defined areas and numbers of neigh-
bours, which is required to apply their algorithm [GF17].

From a methodical perspective it would be interesting to investigate, how results be-
tween the two tracking methods coincide, especially since both algorithms have their
own advantages: The basin approach allows wider analysis of simulation data, but
in the theoretical our rain tracking algorithm could allow to analyse observational
(precipitation) data15. Unfortunately the NoEvap simulations do not correspond
to any observational data. Nevertheless, comparable merging dynamics could be
investigated in larger scale observational data sets, since Patrizio and Randall found
merging in coarse, large domain simulations, which do not resolve CPs, too (Sec.
8.1).

Further, it would be meaningful to investigate slightly more realistic simulations
with low to intermediate re-evaporation (Fig. 6.1). We suppose multiple competing
mechanisms determine when and how aggregation occurs. Evap01, Evap02 dynam-
ics differ from the NoEvap case, which could limit the extent to which the basin
approach would be appropriate. Such reduced re-evaporation analysis could hypo-
thetically be associated to observational data, for example precipitation data from
regions with little re-evaporation as in the very moist boundary layer above the
tropical sea [Ste+05].

Within a much wider perspective, understanding aggregation and merging dynamics
contribute to understanding how phenomena as tropical cyclones, possibly associ-
ated to CSA, form in the real atmosphere. To better understand such extreme
weather and precipitation events enables to improve early warning systems. Such
real time prognoses can prevent harm resulting from extreme events. Due to climate
change, such extreme events are expected to even increase in frequency and severity
[ONe+17] and, since they often impact vulnerable regions (as the tropics) most,
should be a research focus of the coming years.

15For such an application the rain tracking would need to be improved as discussed in Sec. 5.3.3
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A. Appendix

A.1. Methods supplements
A.1.1. TOBAC tracking algorithm, applicable to a wide variety

of situations
The Tracking and Object-Based Analysis of Clouds (TOBAC, [Hei+19]) project aims
to address the issue of limited compatibility between different existing approaches.
The project claims, that most algorithms for resolving individual updraughts exist
for high resolution data only, where in contrast grid spacing usually is up to several
km when simulating larger domains and longer time intervals. TOBAC offers a
toolbox for an object-based analysis of a variety of cloud types, including deep
convection in LES and CRM data. The flexible framework is set up in a modular
way and thus suitable for wide range of data sets. It provides modules concerned
with handling input and output data, feature detection, segmentation of cloud areas,
a trajectory linking and finally object-based analysis tools. It is implemented in
python, uses established python libraries and is published under Creative Commons
license. 1

Potentially, existing approaches could be integrated to the TOBAC framework. In
theory this could include features of the algorithm presented in 5.3, which is imple-
mented in python too, but stands on its own.

1[Hei+19] Creative Commons Attribution 4.0 License, code available at https://github.com/
climate-processes/tobac
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Figure A.1.: Rain patches over time, for simulations with Evap01 (a),
Evap02 (b) and Evap06 (c). With little re-evaporation (a and b), rain patches are
restricted to localised areas quickly (after about three days, a and b) and a persistent
dry area emerges, whereas no aggregation occurs for Evap06 (c). Interestingly,
aggregation pattern occur faster with weak CPs (Evap01, Evap02) than in their
absence (NoEvap) (Sec. 6.0.1).

A.2. Results supplements

A.3. Model supplements

A.3.1. Scale Analysis, estimating the Reynolds number

We insert a typical horizontal velocity of synoptic scales of U ≈ 10 m s−1, which is
comparable to the maximal velocities measured at our lowest layer (compare Fig.
8.1). For the typical length scale of L ≈ 104 m we approximate twice the domain
size (L ≈ 2 · 480 km ≈ 107 m). The viscosity is a material constant, which is
approximated with the magnitude ν ≈ 10−5 m2 s−1 for air. Applying these values in
Re = UL̃

ν
leads to a high Reynolds-number [Hol73]:

Re = U · L̃
ν

= 10 m · 107 m/s

10−5m2/s
= 1013 (A.1)
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A.3.2. Fourier expansion of the source function

W = (1 + cos(2πx− x0

L
)N with : cos(x− x0)2 = 1 + cos(2(x− x0)

2
= 2cos(πx− x0

L
)2N

= 2N(1
2 · e

iπ
x−x0

L + e−iπ
x−x0

L )2N with : (a+ b)n =
k=n∑
k=0

(
n

k

)
an−kbk

= 2N
22N

k=2N∑
k=0

(
2N
k′

)
e2iπ (x−x0)

L
(2N−k′)e−iπ

(x−x0)k′
L )

to centre around zero shift index by substituting k′ = N − k,

−→ k = N − k′,−→
k′=N−2N∑
k′=N−0

=
k′=−N∑
k′=N

= 2N
22N

k=N∑
k=−N

(
2N

N − k

)
eiπ

(x−x0)
L

2k

split the sum in N>0 and N<0 and re-write combine the exponential pairwise to cosine

= 2N
22N−1

k=N∑
k=0

(
2N

N − k

)
cos

(
2πk (x− x0)

L

)
χk

ensure to treat k=0 separately using χk :

where χk
{

1/2 for k = 0 (A.2)
1, for k > 0 (A.3)

Now we want to normalise the result so
∫ L/2
−L/2W = 1. This will satisfy the continuity

constrain. We first look at a single mode (k 6= 0) of the Fourier-expansion, which
we integrate over the entire domain:

2N
22N−1

∫ L/2

−L/2

(
2N

N − k

)
cos

(
πk

(x− x0)
L

)
dx

= 2N
22N−1 ·

(
2N

N − k

)∫ L

0
cos

(
πk

(x− x0)
L

)
dx

= 0

The cosine function integrated over the entire domain is always zero. Thus, regarding
normalisation only the constant mode k = 0, → cos(0) = 1 has to be taken into
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account:

1 != c ·
∫ L/2

−L/2
cos(0)dx (A.4)

1 = c ·
∫ L

0
1dx (A.5)

1 = c · (L− 0) (A.6)
−→ c = 1/L (A.7)

Extension to 2D

To extend the problem to two dimensions, the function W has to be periodic and
real valued W (x, y) = W (x + Lx, y) and W (x, y) = W (x, y + Ly), for x, y, L ∈ R.
Further, a square domain has sides with equal lengths: Lx != Ly = L. For the two-
dimensional Ansatz we choose W (x, y) = (1 + cos(2π x−x0

L
k))N · (1 + cos(2π y−y0

L
l))N .

Analogously to the one-dimensional derivation above, W (x, y) = W (x) ·W (y) can
be expressed:

W (x, y) = W (x) ·W (y) (A.8)

=
[
cos

(
πk

(x− x0)
L

)
cos

(
πl

(y − y0)
L

)]2N
(A.9)

= cos
(
πk

(x− x0)
L

)2N
· cos

(
πl

(y − y0)
L

)2N
(A.10)

= 1
(22N−1)2

k,l=N∑
k,l=0

(
2N

N − k

)
cos

(
2πk (x− x0)

L

)( 2N
N − l

)
cos

(
2πl (y − y0)

L

) 1
(δk0)( δl0)

(A.11)

where δk,0(orδl,0) =
{

1, for k = 0 (or l = 0) (A.12)
0, for k 6= 0 (or l 6= 0) (A.13)

In order to write these in the form of a standard Fourier-Series the following relation
is used:

cos(a+ b) = cos(a)cos(b) + sin(a)sin(b) (A.14)
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This results to:

cos
(
2πk (x− x0)

L

)
cos

(
2πl (y − y0)

L

)
= cos(2π

L
kx0)cos(2π

L
ly0)cos(2π

L
kx)cos(2π

L
ly)

+ cos(2π
L
kx0)sin(2π

L
ly0)cos(2π

L
kx)sin(2π

L
ly)

+ sin(2π
L
kx0)cos(2π

L
ly0)sin(2π

L
kx)cos(2π

L
ly)

+ sin(2π
L
kx0)sin(2π

L
ly0)sin(2π

L
kx)sin(2π

L
ly)

We are aiming to get a normalised form of a general Fourier expansion:

f =
∑
k,l

aklcos(
2π
L
x)cos(2π

L
y) + bklcos(

2π
L
x)sin(2π

L
y)

+ cklsin(2π
L
x)cos(2π

L
y) + dklsin(2π

L
x)sin(2π

L
y)

In order get the results of the normalised solution, we calculate the pre-factor for
two dimensions, by using again that W(x,y) = W(x)W(y):

A = 1
(22N−1)2

(
2n

n− k

)(
2n
n− l

)
χkχl

(22N−1)2((
2N
N

)2 1
4L

2)

=4χkχl

(
2n
n−k

)(
2n
n−l

)
(

2N
N

)2

The final solution for the Fourier component are:

akl =Acos(2π
L
xo)cos(

2π
L
y0) (A.15)

bkl =Acos(2π
L
x0)sin(2π

L
y0) (A.16)

ckl =Asin(2π
L
x0)cos(2π

L
y0) (A.17)

dkl =Asin(2π
L
x0)sin(2π

L
y0) (A.18)

W =
∑
k,l

Acos(2π
L
kx0)cos(2π

L
ly0) + Acos(2π

L
kx0)sin(2π

L
ly0) (A.19)

+ Asin(2π
L
kx0)cos(2π

L
ly0) + Asin(2π

L
kx0)sin(2π

L
ly0) (A.20)

with A= 1
L

(
2n
n−k

)(
2n
n−l

)
(

2n
n

)2
4

(1 + δk,0)(1 + δl,0) (A.21)
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A.3.3. Implementation: Deriving the gradient velocity field from
a given updraught-sink distribution

1. Create Fourier coefficients from sink distribution:

Input : N : the inverse peak width, L: the domain size, (xi, yi): the locations
of all flow sinks, extracted from the data, s = S ′/c: a strength factor for
each (xi, yi) tuple,

Processing : Calculating the Fourier expansion of the joint W of the given sink list.
The Fourier components of each sink are weighted with s, a factor scaling
the modelled sink strengths with basin area extracted from the data

Return: [a, b, c, d]: All four Fourier coefficients for the 2D Fourier expansion ofW ,
[x, y]: the L× L grid where the coefficients are calculated

2. Further derive Fourier coefficients for the model properties of interest, based
on [a, b, c, d]. Different functions calculate the coefficients for the potential
(A), and the components of the velocity gradient field u and v (B):

Input : Each function (A,B) takes all four Fourier coefficient arrays of W as
input

Processing : (A) Derive the coefficients for the potential Φ, using φkl = −qkl

(k2+l2 (and
q00

!= 0)
(B) Derive the Fourier coefficients for u and v, to later obtain the gradient
field, corresponding to the velocity vector ~v =

(
u
v

)
. We use the following

trick: calculating the gradient of a sum of products of trigonometric
functions means rearranging the coefficients and multiplying by Ωk

(k2+l2)

Return: Returns: Fourier coefficients for Φ, u or v

3. Back transformation from Fourier space to real space, applicable for all prop-
erties W , Φ, u and v

Input : Fourier coefficients of Φ, u, v or Q

Processing : Multiply derived Fourier coefficients with corresponding term of the
Fourier series, and add the different Fourier components to one solution

Return: Real space solution of the field, the potential, components of the velocity
vector field as L× L array.
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Figure A.2.: Illustration of the Gaussian theorem applied on a basins.
Notice that the arrows are always parallel to the red line, so the orthogonal com-
ponent vanishes and no flow crosses the basins’ borders. The borders are areas
of divergence. From there the flow increasingly converges towards the updraught
centre.

Figure A.3.: Temporal development of l(t) visualises how the vertical
cloud distribution changes over the NoEvap simulation.
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Figure A.4.: Domain averages of precipitation I(t) (a, blue), horizontal
lowest-layer wind speed |v(t)|z≈50m (a, orange), surface latent heat flux
lhf(t)| (b, black) and relative humidity q(t)|z≈50m (b, green) and OLR at
the top of the domain OLR(t)|z≈17500m (c, red). After 330 h two convective cells
are left (light grey shading), which then merge (purple line) to the final remaining
one after 350 h (white background). All physical variables (a-c) show oscillations,
with periods provided in the respective colour of their plot. Black arrows (a) visualise
the delay time between maximum convergence v(t)||z≈50m and maximum I(t).

.
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Figure A.5.: OLR oscillations in NoEvap simulations differ with heights.
A direct comparison showed, that oscillations between temperature
and OLR at respective heights are quite in phase. For example
OLR(t)z≈5500m seems synchronised to Θl(t)z≈5500m (compare Fig.
8.3).

A.3.4. Proof: scaling of Amodel
basini

with strength parameter Si

A.4. Discussion supplements

A.4.1. Multiple coupled oscillators
In general N coupled oscillators can show very complex behaviour, which is often
impossible to describe analytically. A simple case are (quasi)-periodic oscillations
(Fig. A.4, Sec. 8.1.3) where different system components reach some kind of syn-
chrony, which Strogatz describes as an order in time. But how and when coupled
oscillators synchronise themselves is only studied for a limited number of simplified
cases [Str04].
Assuming N coupled oscillators, dynamics become even more diverse and complex
to describe or predict. An equal global coupling could provide a simplified frame-
work, which could be associated to the interaction of N convective cells under the
assumption that heat is equally dissipated over the entire domain (weak temperature
gradient approximation, Sec. 4.1.6), so the spatial dependence could be neglected.
Assuming that coupling would differ depending on the distance between convective
cells demands to model a network of coupled oscillators (e.g [ROH05]) which raises
the difficulty of finding an analytical representation2.

In general, one well-studied type of oscillators are ’pulse-coupled’ oscillators, whose
interaction can be assumed to happen at discrete times, so their coupling can be

2Again, then a possible simplification is to focus on nearest neighbour interaction, Sec. 8.3
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described based on a delta function. Although we can not assume a perfect pulse
interaction between convective cells, gravity waves travel on much faster than con-
vective time-scales (Sec. 4.1.1), which might allow to estimate that the effect of an
interaction dissipates before the next perturbation is received 3. Mirollo and Strogatz
studied the problem of N identical, pulse-coupled oscillators, where each oscillator
is coupled to all others. Over time groups of oscillators synchronise, whereby a
larger group ’absorbs’ other oscillators until a single synchronised group remains, a
picture which could be associated with ’competing’ rain-cell dynamics observed in
CSA (Fig. 8.4).

Suspecting an effect (as increasing temperature) would take finite time until con-
vective dynamics are impacted (eg. convective activity is inhibited), would require
to consider a coupling with time delayed feedback.

Schöll et al. studied a simple model of time delayed coupled neural oscillators
[Sch+09] and found that synchronisation can be either enhanced or suppressed de-
pending on the delay time. An additional application of time-delayed self-feedback
caused complex scenarios, for example synchronised in-phase or anti-phase oscil-
lations, bursting patterns or amplitude death, where amplitude variations are sup-
pressed as a consequence of coupling. Developing our hypothesis further, we suggest
that each convective cell (oscillator) would obtain such time-delayed self-feedback
by warming the atmosphere. Therefore, it is possible that some of the oscillation
and decaying phenomena observed in our NoEvap simulations could be interpreted
as the complex interaction of inhibitory (self-)coupled oscillators and concluding a
toymodel model should be sought to mimic such interaction of convective oscillators4.

Overall, despite the absence of CPs, NoEvap dynamics can be quite complex and
simplifications will have to be made, to derive an analytical model.

3http://www.scholarpedia.org/article/Pulse-coupled-oscillators
4We are aware, that implementing such a model would be challenging, but encouragingly Heltberg
et al. consider oscillations in the convective contexts to be much simpler to described than
oscillations in biological processes, which are prevailing in the oscillator models discussed above
[Hel+21]

124

http://www.scholarpedia.org/article/Pulse-coupled-oscillators

	Abstract
	Glossary
	Introduction
	Background
	Theoretical background
	Atmospheric convection
	CAPE in the tropical atmosphere
	Moist Static Energy (MSE) and Frozen Moist Static Energy (FMSE)
	Large Eddy Resolving Simulations (LES) and Cloud Resolving Models (CRM)
	Radiative Convective Equilibrium (RCE)
	Weak temperature gradient approximation
	Convective cold pools

	Convective Self Aggregation (CSA)
	CSA and domain size
	Quantifying CSA
	Drivers of CSA
	CSA and CPs

	Models of convective self aggregation
	Bretherton, Blossey, Khairoutdinov, 2005
	wing2014physical, wing2014physical and emanuel2014radiative, emanuel2014radiative
	Craig and Mack, 2013
	Bi-stability and spatial evolution of CSA


	Methods to detect convective events
	Large-eddy (LES) and cloud-resolving model (CRM) simulations used
	Detection of convective events
	Background on cloud tracking
	Tracking individual rain clusters
	Motivation of tracking algorithm, based on horizontal velocity field

	Implementation of a rain cluster tracking algorithm
	Preprocessing
	Structuring
	Discussion of the rain tracking algorithm

	Calculating (CAPE) to detect regions where convection can possibly take place
	Tracking of convective events based on the velocity field
	Basins of attraction
	Determine basins of attraction as inflow areas of convective events
	Discussion of the basin approach


	Data analysis
	Reducing the re-evaporation of rain
	Analysis of aggregation dynamics based on rain tracking
	Dynamics with and without cold pools (FullEvap versus NoEvap)
	Merging
	Resolution

	Oscillations
	CAPE
	The low layer velocity field
	Analysis of the stationary flow field
	Development of basin areas over time
	Discussing possible advantages of larger updraughts
	Laterial updraughts dynamics

	Dynamical scaling

	Model
	Theoretical basis
	Motivation of the model
	Define Poisson-equation which determines the horizontal flow field

	Solving the Poisson equation
	Deducing the solution of the Poisson equation
	Realisation of the model
	Proofing the scaling of basins areas with updraught strength

	Implementation of the model
	Choosing parameters of the toymodel
	Performance of the basin reconstruction
	Discussing the model

	Towards a dynamical model
	Performance of the update dynamic

	Contribution of our model to the state of the art

	Discussion
	Discussion of possible physical mechanism
	Transient stage
	Cloud effects
	Synchronised oscillations in the final aggregated stage
	Concluding hypothesises on physical feedbacks possibly contributing to CSA and observed oscillations

	Interpretations as convective oscillators
	Two coupled oscillators
	Conclusion
	Outlook

	Appendix
	Methods supplements
	TOBAC tracking algorithm, applicable to a wide variety of situations

	Results supplements
	Model supplements
	Scale Analysis, estimating the Reynolds number
	Fourier expansion of the source function
	Implementation: Deriving the gradient velocity field from a given updraught-sink distribution
	Proof: scaling of Amodelbasini with strength parameter Si

	Discussion supplements
	Multiple coupled oscillators



